摘要
对二维Ti_(3)C_(2)T_(x)材料进行了磺酸基团接枝改性(Ti_(3)C_(2)T_(x)−SO_(3)H),表征了改性前后微观结构的变化,研究了对重金属Pb^(2+)的吸附行为与机制。XRD、FTIR及EDS表明磺酸基团在Ti_(3)C_(2)T_(x)表面成功接枝,而SEM则发现Ti_(3)C_(2)T_(x)−SO_(3)H呈现较Ti_(3)C_(2)T_(x)更轻薄的层状结构。改性后,Ti_(3)C_(2)T_(x)−SO_(3)H对重金属Pb^(2+)20 min内达到吸附平衡,最大吸附量达到733.6 mg·g^(−1),较Ti_(3)C_(2)T_(x)吸附量提升了23%,且吸附量随着pH(2~6)的增加而逐渐增大,在Mg^(2+)、Ca^(2+)、Co^(2+)、Zn^(2+)等共存离子的干扰下,仍保持较高的吸附水平。机制分析表明,改性前后吸附过程均符合准二级动力学模型和Langmuir吸附等温线拟合模型,以单分子层化学吸附为主,但由于磺酸基团提供了更多的吸附饱和活性位点,并提高了Ti_(3)C_(2)T_(x)在水溶液中的分散性,使改性后对Pb^(2+)吸附性能更优异。
The two-dimensional Ti_(3)C_(2)T_(x) was modified by sulfonic acid group grafting(abbreviated as Ti_(3)C_(2)T_(x)−SO_(3)H),and its microstructure before and after the modification was characterized.The adsorption behavior and mechanism of heavy metal Pb^(2+)by the Ti_(3)C_(2)T_(x)−SO_(3)H were also investigated.XRD,FTIR and EDS analyses indicate that sulfonic acid group is successfully grafted on the surface of the Ti_(3)C_(2)T_(x),while SEM shows that the Ti_(3)C_(2)T_(x)−SO_(3)H has a lighter and thinner layered structure than the Ti_(3)C_(2)T_(x).Pb^(2+)adsorption by the Ti_(3)C_(2)T_(x)−SO_(3)H reaches equilibrium within 20 minutes.The maximum adsorption capacity of the Ti_(3)C_(2)T_(x)−SO_(3)H is 733.6 mg·g^(−1),which is 23% higher than the Ti_(3)C_(2)T_(x).And Pb^(2+)adsorption capacity by the Ti_(3)C_(2)T_(x)−SO_(3)H gradually increases with the increase of pH(2-6).Under the interference of coexisting ions such as Mg^(2+),Ca^(2+),Co^(2+)and Zn^(2+),the Ti_(3)C_(2)T_(x)-SO_(3)H still maintains a high level of Pb^(2+)adsorption.Pb^(2+)adsorption processes by both the Ti_(3)C_(2)T_(x) and the Ti_(3)C_(2)T_(x)−SO_(3)H fit well the pseudo second kinetic model and Langmuir isotherm model,suggesting that the adsorption processes are monolayer chemisorption.The Ti_(3)C_(2)T_(x)−SO_(3)H shows more excellent adsorption performance towards Pb^(2+)after adsorption mainly due to the more active sites provided by sulfonic acid group and the enhanced dispersion in aqueous solution.
作者
李晴晴
蒋豪丽
葛梦妮
杨彦
郭风
龙云良
张建峰
LI Qingqing;JIANG Haoli;GE Mengni;YANG Yan;GUO Feng;LONG Yunliang;ZHANG Jianfeng(College of Mechanics and Materials,Hohai University,Nanjing 210098,China;Nanjing Hydraulic Research Institute,Nanjing 210029,China;Jiangsu Engineering Research Center on Utilization of Alternative Water Resources,Nanjing 210000,China;Nanjing Aqua-world Institute of Seawater Desalination CO.,LTD,Nanjing,210000,China)
出处
《复合材料学报》
EI
CAS
CSCD
北大核心
2021年第11期3872-3883,共12页
Acta Materiae Compositae Sinica
基金
国家重点研发计划(2018YFC1508704)。