摘要
讨论中立型变时滞随机微分方程改进的修正截断Euler-Maruyama(EM)方法的q阶矩强收敛性,并得到收敛速度。结果表明此方法适用于高度非线性的漂移项和扩散项,且相较于隐式的修正截断EM方法计算量更小,适用范围更广。
Strong convergence of the modified truncated Euler-Maruyama method for stochastic differential equa-tions with a time-dependent delay is discussed,and the convergence rate is obtained.This method can be applied to neutral stochastic differential delay equations(NSDDEs)with highly nonlinear drift and diffusion terms.Com-pared with the implicit modified truncated Euler-Maruyama method,the amount of calculation required is reduced and the application range is wider.
作者
王歌
兰光强
WANG Ge;LAN GuangQiang(College of Mathematics and Physics,Beijing University of Chemical Technology,Beijing 100029,China)
出处
《北京化工大学学报(自然科学版)》
CAS
CSCD
北大核心
2021年第6期123-128,共6页
Journal of Beijing University of Chemical Technology(Natural Science Edition)
基金
北京市自然科学基金(1192013)。