期刊文献+

基于合作-竞争的异质分数阶多智能体系统的分组一致性分析

Couple-group Consensus of Heterogeneous Fractional Multi-Agent System Based on Cooperative-competition Interactions
下载PDF
导出
摘要 针对一类具有通信时延和输入时延的异质分数阶多智能体系统在二分拓扑下的加权分组一致性问题,基于合作-竞争机制,提出一种新的分组一致性协议.在拓扑固定且为二分图的情况下,应用图论和复频域分析法得到了系统实现分组一致性的充分条件,并通过仿真算例验证了其有效性. The weighted couple-group consensus of a class of heterogeneous fractional multi-agent systems with communication delay and input delay under bipartite topology was studied in this paper.Based on the cooperative-competitive mechanism,a novel couple-group consensus protocol was proposed.In the case of a fixed topological bipartite graph,the upper bound of input delay was obtained by using graph theory and complex frequency domain analysis method.Finally,a simulation example was given to verify the effectiveness of the conclusion.
作者 蒲兴成 程正星 PU Xingcheng;CHENG Zhengxing(School of Science,Chongqing University of Posts and Telecommunications,Chongqing 40065,China;School of Computer Science and Technology,Chongqing University of Posts and Telecommunications,Chongqing 40065,China)
出处 《徐州工程学院学报(自然科学版)》 CAS 2021年第4期18-27,共10页 Journal of Xuzhou Institute of Technology(Natural Sciences Edition)
基金 国家自然科学基金项目(61876200) 重庆市科委自然科学基金项目(cstc2018jcyjAX0112)。
关键词 分组一致性 异质 分数阶 多智能体系统 时延 couple-group consensus heterogeneity fractional order multi-agent system time-delay
  • 相关文献

参考文献1

二级参考文献8

  • 1曹军义,曹秉刚.分数阶控制器的数字实现及其特性[J].控制理论与应用,2006,23(5):791-794. 被引量:33
  • 2WANG Q,STENGEL R F. Robust nonlinear control of a hypersonic aircraft[J], Journal of Guidance, Control and Dynamics, 2000, 23(4); 577--584.
  • 3ITO D,WARD D, VALASEK J. Robust dynamic inversion controller design and analysis for the X-38[C]// AIAA Guidance, Navigation, and Control Conference. Montreal, Canada: AIAA, 2001 :1 -- 11.
  • 4XU H J, IOANNOU P A, MIRMIRANI M. Adaptive sliding mode control design for a hypersonic flight vehicle[J]. Journal of Guidance, Control and Dynamics, 2004,25 (5) : 829 -- 838.
  • 5Serdar Ethem Hamamci. An algorithm for stabilization of fractional order time delay systems using fractional-order PID controllers [J]. IEEE Transactions on Automatic Control, 2007,52 (10) : 1964-- 1969.
  • 6Podlubny I. Fractional-order systems and PI^λD^μ controllers [J]. IEEE Transactions on Automatic Control, 1999, 44(1):208--214.
  • 7Vinagre B M, Podlubny I, Hernandez A, et al. Some approximations of fractional order operators used in control theory and applications[J]. Fractional Calculus and Applied Analysis, 2000(3) :231--248.
  • 8CHEN Y Q, MOORE K L. Discretization schemes for fractional-order differentiators and integrators[J]. IEEE Trans on Circuits and Systems, 2002,49(3) :363--367.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部