期刊文献+

基于逆协方差交叉融合的多传感器非线性滤波器 被引量:5

Multi-sensor nonlinear filter based on inverse covariance intersection fusion
下载PDF
导出
摘要 为了解决互协方差未知的多传感器非线性系统的融合估计问题,针对非线性系统提出了基于序贯逆协方差交叉和并行逆协方差交叉的两种容积卡尔曼融合估计算法。各个子系统通过容积卡尔曼滤波器得到滤波估计,分别利用序贯逆协方差交叉融合算法和并行逆协方差交叉融合算法对各子系统局部估计进行融合。两种算法可有效地避免求解高维的权系数凸优化问题,降低了计算负担。当传感器数目很多时,并行逆协方差交叉融合算法因其多层并行结构可以显著节约融合时间。最后仿真结果证明了算法的有效性。 Two cubature Kalman fusion estimation algorithms based on sequential inverse covariance intersection and parallel inverse covariance intersection for nonlinear systems are presented,in order to solve the fusion estimation problem of multi-sensor nonlinear systems with unknown cross-covariance.The cubature Kalman filter is used to obtain the filter estimates of each subsystem,and then the sequential inverse covariance intersection fusion algorithm and the parallel inverse covariance intersection fusion algorithm are used to fuse the local estimates of each subsystem.The two algorithms can effectively avoid the high-dimensional convex optimization problem of solving weighted coefficients,and greatly reduce the computational burden.When the number of sensors is particularly large,the parallel inverse covariance intersection fusion algorithm can significantly reduce the fusion time because of its multi-layer parallel structure.Finally,the simulation results prove the effectiveness of the algorithms.
作者 刘金钢 郝钢 LIU Jin-Gang;HAO Gang(College of Electronic Engineering, Heilongjiang University, Harbin 150080, China)
出处 《黑龙江大学工程学报》 2021年第4期59-65,共7页 Journal of Engineering of Heilongjiang University
基金 国家自然科学基金青年基金项目(61503127)。
关键词 多传感器信息融合 逆协方差交叉融合 容积卡尔曼滤波器 非线性系统 multi-sensor information fusion inverse covariance intersection fusion cubature Kalman filter nonlinear system
  • 相关文献

参考文献7

二级参考文献45

  • 1潘泉,杨峰,叶亮,梁彦,程咏梅.一类非线性滤波器——UKF综述[J].控制与决策,2005,20(5):481-489. 被引量:230
  • 2熊伟,陈立奎,何友,张晶炜.有色噪声下的不敏卡尔曼滤波器[J].电子与信息学报,2007,29(3):598-600. 被引量:11
  • 3葛泉波,王洵,管冰蕾.异步多传感器网络的无序量测融合[C].2009中国控制与决策会议.2009:4311-4316.
  • 4Ge Q B,Feng X L,Wen C L. Distributed Fusion with()ut-Of-Sequence Estimates for Sensor Networks[C]//Cognitive System with Interactive Sensors 2009,Espace Hamelin-Paris, France, 2009: 16-18.
  • 5Sun S L,Wen D X. Distributed weighted fusion estima-tors with random delays and packet dropping [J]. Cir-cuits Systems, Signal Processing, 2007,26 (4) : 591-605.
  • 6Bar-Shalom, Y. On the Track-to-Track CorrelationProblem [J]. IEEE Transactions on Automatic Con-trol, 1981,26 (1): 571-572.
  • 7Ge Q B,Wen C L. Decentralized Fusion with RelativeMeasurements for Delayed Sensor Networks [C] //IEEE International Conference on Macaronis and Auto-mation, Harbin, China, 2007 : 366-371.
  • 8Bar-Shalom Y,Li X R. Multitarget-Multisensor Track-ing: Principles and Techniques [M]. Stors,CT : YBSPublishing, 1995.
  • 9Bar-Shalom Y. Update with out-of-sequence measure-ments in tracking: exact solution [J]. IEEE Transac-tions on Aerospace and Electronic Systems,2002,38(3): 769-777.
  • 10Yu A X,Liang D N, Hu W D. A Unified ()ut-o?-se-quence Measurements Filter [C]. IEEE InternationalRadar Conference, Washington,USA,May 2005 :453-458.

共引文献43

同被引文献16

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部