摘要
Pt/Al_(2)O_(3) catalysts with smaller size of Pt nanoparticles were prepared by ethylene glycol reduction method in two different way and their oxidation activities for three typical VOCs(volatile organic compounds)were evaluated.The catalyst prepared by first adsorption and then reduction procedure is denoted as L-Pt/Al_(2)O_(3) while the catalyst prepared by first reduction and then loading procedure is defined as R-Pt/Al_(2)O_(3).The results show that L-Pt/Al_(2)O_(3) with the stronger interaction between Pt species and Al_(2)O_(3) exhibit smaller size of Pt nanoparticles and favorable thermal stability compared with R-Pt/Al_(2)O_(3).L-Pt/Al_(2)O_(3) is favor of the formation of more adsorbed oxygen species and more Pt^(2+)species,resulting in high catalytic activity for benzene and ethyl acetate oxidation.However,R-Pt/Al_(2)O_(3) catalysts with higher proportion of Pt^(0)/Pt^(2+)and bigger size of Pt particles exhibits higher catalytic activity for n-hexane oxidation.Pt particles in R-Pt/Al_(2)O_(3) were aggregated much more serious than that in L-Pt/Al_(2)O_(3) at the same calcination temperature.The Pt particles supported on Al_(2)O_(3) with~10 nm show the best catalytic activity for n-hexane oxidation.
基金
the National Key Research and Development Program of China(2016YFC0204300)is gratefully acknowledged.