期刊文献+

基于Parareal算法的CIR模型数值保正性研究

Research on the Numerical Positivity-Preserving of the CIR Model Based on the Parareal Algorithm
下载PDF
导出
摘要 CIR(Cox-Ingersoll-Ross)模型本身对数值算法具有保正性要求。因此,本文进行了隐式Euler方法作为粗细因子、Milstein方法作为粗细因子等4种不同组合的Parareal算法对CIR模型的数值计算,数值研究了Parareal算法在不同扰动值下的保正性及均方误差收敛性。结果表明,上述考虑的Parareal算法具有均方收敛性和数值保正性。 CIR(Cox-Ingersoll-Ross)model itself has the requirement of preserving the correctness of the numerical algorithm.Therefore,in this paper,Parareal algorithm with four different combinations of implicit Euler method as the thickness factor and Milstain method as the thickness factor is performed for the numerical calculation of CIR model,and the positivity-preserving properties and the convergence of the mean square error of Parareal algorithm under different disturbance values are numerically studied.The results show that the Parareal algorithm has mean square convergence and numerical positivity.
作者 查厚瀛 李永康 方泽来 师速利 李欣 刘翔 ZHA Houying;LI Yongkang;FANG Zelai;SHI Suli;LI Xin;LIU Xiang(School of Science,China University of Mining&Technology,Beijing,100089 China)
出处 《科技创新导报》 2021年第21期186-191,共6页 Science and Technology Innovation Herald
基金 北京市大学生创新训练项目资助(项目编号:202011413190)。
关键词 CIR 模型 Parareal 算法 保正性 收敛性 Cox-Ingersoll-Ross(CIR)model Parareal algorithm Positivity-preserving properties Astringency
  • 相关文献

参考文献5

二级参考文献37

  • 1Ping CHEN~(1,2+) Jin-de WANG~1 1 Department of Mathematics,Nanjing University,Nanjing 210093,China,2 School of Science,Nanjing University of Science and Technology,Nanjing 210094,China.Wavelet estimation of the diffusion coefficient in time dependent diffusion models[J].Science China Mathematics,2007,50(11):1597-1610. 被引量:3
  • 2范龙振.一类均值随机跳跃型广义Vasicek模型[J].系统工程学报,2010,25(4):467-472. 被引量:1
  • 3范龙振,张国庆.两因子CIR模型对上交所利率期限结构的实证研究[J].系统工程学报,2005,20(5):447-453. 被引量:19
  • 4Bal G. On the convergence and the stability of the parareal algorithm to solve partial differential equations [J]. In Proceedings of the 15th International Domain Decomposition Conference, Lect. Notes Comput. Sci. Eng., 2003, 40: 426-432.
  • 5Bal G and Maday Y. A "parareal" time discretization for non-linear pde's with application to the pricing of an American put. In Recent Developments in Domain Decomposition Methods[J]. Lect. Notes Comput. Sci. Eng., 2002, 23: 189-202.
  • 6Bal G. Parallelization in time of (stochastic) ordinary differential equations[J]. Submitted (a PDF file is available at http://www, columbia, edu/-gb2030).
  • 7Cortial J and Farhat C. A time-parallel implicit method for accelerating the solution of non-linear structural dynamics problems[J]. Internat. J. Numer. Methods Engrg., 2008, 77: 451-470.
  • 8Engblom S. Parallel in time simulation of multiscale stochastic chemical kinetics[J]. 2008, to appear in the IT technical report series (a PDF file is available at http://user.it.uu.se/stefane/ ssa_parareal, pdf.
  • 9Engblom S. Time-parallel Simulation of Stochastic Chemical Kinetics[J]. Numerical Analysis and Applied Mathematics: International Conference on Numerical Analysis and Applied Mathematics. AIP Conference Proceedings, 2008, 1048: 174-177.
  • 10Farhat C and Chandesris M. Time-decomposed parallel time-integrators: Theory and feasibility studies for fluid, structure, and fluid-structure applications[J]. Internal. J. Numer. Methods Engrg., 2003, 58: 1397-1434.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部