摘要
CIR(Cox-Ingersoll-Ross)模型本身对数值算法具有保正性要求。因此,本文进行了隐式Euler方法作为粗细因子、Milstein方法作为粗细因子等4种不同组合的Parareal算法对CIR模型的数值计算,数值研究了Parareal算法在不同扰动值下的保正性及均方误差收敛性。结果表明,上述考虑的Parareal算法具有均方收敛性和数值保正性。
CIR(Cox-Ingersoll-Ross)model itself has the requirement of preserving the correctness of the numerical algorithm.Therefore,in this paper,Parareal algorithm with four different combinations of implicit Euler method as the thickness factor and Milstain method as the thickness factor is performed for the numerical calculation of CIR model,and the positivity-preserving properties and the convergence of the mean square error of Parareal algorithm under different disturbance values are numerically studied.The results show that the Parareal algorithm has mean square convergence and numerical positivity.
作者
查厚瀛
李永康
方泽来
师速利
李欣
刘翔
ZHA Houying;LI Yongkang;FANG Zelai;SHI Suli;LI Xin;LIU Xiang(School of Science,China University of Mining&Technology,Beijing,100089 China)
出处
《科技创新导报》
2021年第21期186-191,共6页
Science and Technology Innovation Herald
基金
北京市大学生创新训练项目资助(项目编号:202011413190)。
关键词
CIR
模型
Parareal
算法
保正性
收敛性
Cox-Ingersoll-Ross(CIR)model
Parareal algorithm
Positivity-preserving properties
Astringency