期刊文献+

PCA-U-Net based breast cancer nest segmentation from microarray(jj)hyperspectral images 被引量:1

原文传递
导出
摘要 The incidence of breast cancer is tending younger globally,and tumor development,clinical treatment,and prognosis are largely influenced by histopathological diagnosis.For diagnosed patients,the distinction between the cancer nests and normal tissue is the basis of breast cancer treatment.Microscopic hyperspectral imaging technology has shown its potential in auxiliary pathological examinations due to the superior imaging modality and data characteristics.This paper presents a method for cancer nest segmentation from hyperspectral images of breast cancer tissue microarray samples.The scheme combines the strengths of the U-Net neural network and unsupervised principal component analysis,which reduces the amount of calculation and improves the recognition accuracy.The experimental accuracy of cancer nest segmentation reaches 87.14%.Furthermore,a set of quantitative pathological characteristic parameters reflects the degree of breast cancer lesions from multiple angles,providing a relatively comprehensive reference for the pathologist’s diagnosis.In-depth exploration of the combined development of deep learning and microscopic hyperspectral imaging technology is worthy to promote efficient diagnosis of breast tumors and concern for human health.
出处 《Fundamental Research》 CAS 2021年第5期631-640,共10页 自然科学基础研究(英文版)
基金 funded by National Natural Science Foundation of China(Grant No.61975056 )the Shanghai Natural Science Foundation(Grant No.19ZR1416000) the Science and Technology Commission of Shanghai Municipality(Grants No.20440713100,19511120100,18DZ2270800).
  • 相关文献

参考文献2

共引文献908

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部