期刊文献+

基于机器学习的二氧化碳电化学还原制备甲酸盐研究 被引量:2

Investigation of electroreduction of carbon dioxide into formate based on machine learning
下载PDF
导出
摘要 系统研究了不同双金属中心催化剂催化二氧化碳电化学还原制备甲酸盐。借助机器学习,确定了反应中心金属原子序数、电负性和电离能等特征对双金属中心催化剂表面二氧化碳还原具有主要的影响。基于这些特征,通过高通量机器学习快速预测了105种双金属中心催化剂二氧化碳电还原制甲酸盐及其主要竞争反应的Gibbs自由能变,筛选出29种双金属中心催化剂更倾向于二氧化碳还原得到甲酸盐,是潜在的转化二氧化碳为甲酸盐的高性能催化材料。运用类似的方法预测了105种双金属中心催化剂表面二氧化碳还原中间体的结构,发现中间体吸附能与其吸附构型具有显著的相关关系。 Electrocatalytic reduction of carbon dioxide to high value-added chemical products has provided a new route to alleviate greenhouse effect and other global problems, attracting intensive attention from both industry and academia. However, it still remains a great challenge to develop electrocatalysts with high performance for practical applications. As one of the major products from carbon dioxide electroreduction, formate is of key importance due to its stability, portability, and high volumetric energy density. In this work, we systematically studied the performance of electrochemical reduction of carbon dioxide to formate on various dual-metal-site catalysts using machine learning in conjunction with density functional theory(DFT) calculations. It was determined that the atomic number,electronegativity and ionization energy of metal atoms in the reaction center are major factors influencing the adsorption of formate intermediates over dual-metal-site catalysts. Based on these features, we predicted the adsorption free energy change for the electroreduction of carbon dioxide to formate and its main competitive reaction, hydrogen evolution reaction. 29 out of 105 dual-metal-site catalysts were identified as potential catalysts for formate production from carbon dioxide electroreduction. A similar method was used to predict the structure of the carbon dioxide reduction intermediates on the surface of 105 dual-metal-site catalysts, and it was found that the adsorption energy of the intermediates has a significant correlation with their adsorption configuration.
作者 刘文萱 张嘉毅 陆奇 张皓晨 LIU Wenxuan;ZHANG Jiayi;LU Qi;ZHANG Haochen(Department of Chemical Engineering,State Key Laboratory of Chemical Engineering,Tsinghua University,Beijing 100084,China)
出处 《化工学报》 EI CAS CSCD 北大核心 2021年第12期6262-6273,共12页 CIESC Journal
基金 国家重点研发计划项目(2017YFB0702800)。
关键词 二氧化碳 电化学 催化剂 DFT计算 机器学习 carbon dioxide electrochemistry catalyst DFT calculation machine learning
  • 相关文献

参考文献3

二级参考文献11

  • 1ROBLES J, BARTOLOTTI L J. Electronegativities, Electron Affinities,Ionzation Potentials and Hardnesses of Elements within Spin Polarized Density Functional Theory [J]. J Am Chem Soc, 1984,106:3723-3727.
  • 2BARTOLOTFI L J, GADRE S R, PARR R G. Electronegativities of the Elements from Simple Xα Theory [J]. J Am Chem Soc, 1980,102:2945-2948.
  • 3VOSKO S H,WILK L,NASAIR M. Accurate Spin-Depend ent Electron Liquid Correlation Energies for Local Spin Density Calculations: an Analysis [J]. Can J Phys, 198058:1200-1211.
  • 4BECKE A D. Density Functional Calculations of Molecula Bond Energies [J]. J Chem Phys, 1986,84:4524-4529.
  • 5PERDEW J P. Density Functional Approximation for th Correlation Energy of the Homogeneous Electron Gas [J].Phys Rev B, 1986,33: 8822-8824.
  • 6MOORE C E. National Standard Reference Data Series 34 [M]. Washington D C: U. S. Government Printing Office 1974.3-7.
  • 7[苏联]拉宾诺维奇BA 尹承烈译.简明化学手册[M].北京:化学工业出版社,1983.26-27.
  • 8PEARSON R G. Absolute Electronegativity and Hardness: Application to Inorganic Chemistry ( Table Ⅲ ) [J].Inorg Chem, 1988,27:734-740.
  • 9SLATER J C. Quantum Theory of Molecules and Solids [M]. New York: McGraw-Hill, 1974.
  • 10喻典,陈志达,王繁,李述周.元素电负性和硬度的密度泛函理论研究[J].物理化学学报,2001,17(1):15-22. 被引量:32

共引文献13

同被引文献3

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部