期刊文献+

基于深度CNN-LSTM神经网络的加工过程实时异常监测模型 被引量:5

Real-time Anomaly Monitoring Model in Machine Process Based on Deep CNN-LSTM Neural Network
原文传递
导出
摘要 为了有效兼顾加工过程实时信号的多维特征和序列特征,以实现精度更高的加工状态异常监测,本文提出了一种基于深度卷积-长短时记忆神经网絡(Convolution Neural Network-Long Short Time Memory,CNN-LSTM)的异常监测模型。该模型以数控系统中采集的实时数据为输入,先利用CNN提取其高维特征并生成特征向量,再利用LSTM进行序列特征提取,最后通过逻辑回归得到异常诊断结果。实验表明,该模型的准确率、精确率、召回率等性能指标均超过98.5%,明显优于其他异常监测模型。 In order to extract both muli-dimensional features and sequential features of the real-time signal of the machining process ffectively and achieve higher-precision anomaly monitoring of the machining stale,an anomaly monitoring model based on deep Convolution Neural Network-Long Short Time Memory(CNN-LSTM)is proposed.The model takes real-time data collected in the CNC system as input.Firstly,CNN is used to extract high-dimensional features and then LSTM is used for sequential feature extraction.Finally,the anomaly diagnosis result is obtained through logistic regression.Experiments show that the accuracy.precision,and recall rate of this model are all over 98.5%,which is significantly better than other anomaly monitoring models.
作者 王成瀚 苏沛源 张臣宏 于建华 沈彬 WANG Chenghan;SU Peiyuan;ZHANG Chenhong;YU Jianhua;SHEN Bin(School of Mechanical Engineering,Shanghai Jiao Tong University,200240,China;Aero Engine Corporation of China Commercial Aircraft Engine Co.,Ltd,201306,China)
出处 《机械设计与研究》 CSCD 北大核心 2021年第6期128-132,140,共6页 Machine Design And Research
基金 工信部04专项(子课题)“大涵道比涡扇发动机关键零件特种加工装备研制与工艺研究”(2018ZX04005001-002) 国防科工局基础产品创新科研项目一XXX研究(DE0904) 上海航天科技创新基金(SAST2018-055)。
关键词 神经网络 数字化制造 实时监控 异常监测 neural network digital manufacturing real-time monitoring anomaly detection
  • 相关文献

参考文献3

二级参考文献16

共引文献386

同被引文献27

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部