期刊文献+

一种基于对数区间隔离森林的电力调度数据异常检测集成算法 被引量:17

An Anomaly Detection Ensemble Algorithm for Power Dispatching Data Based on Log-interval Isolation
下载PDF
导出
摘要 准确的电力调度自动化系统异常检测对电力系统安全稳定运行有重要意义。该系统具有业务种类繁多、业务逻辑交互复杂等特点,带来了调度监测数据维度多、空间分布多样的特性;现有基于机器学习的离线数据异常检测方法,存在对局部异常等特殊异常检测精度与检测效率难以有效兼顾等问题。提出了一种基于对数区间隔离的电力调度数据异常检测方法。针对数据维度之间的分布差异特性,运用马氏距离度量方法,基于每个样本点到数据分布中心的马氏距离,设计了对数区间隔离策略,构建多个子树,并将其整合成对数区间隔离森林异常检测器,筛选出数据集中的异常样本,兼顾检测精度和检测效率。公开数据集和某省级电网调度中心业务数据集作为训练与测试样本,验证了所提方法在异常检测AUC值等综合性能上的先进性及其在实际系统应用中的可行性。 Accurate abnormal detection of the power dispatching automation system is of great significance to the safe and stable operation of the power system.The system has the characteristics of having various kinds of services and complex interaction of business logics,which results in the multiple dimensions and diverse spatial distribution of the dispatching monitoring data.The existing off-line data anomaly detection methods based on machine learning are unable to effectively balance the detection accuracy and detection efficiency of the local anomalies and other special anomalies.Therefore,an electric power dispatching data anomaly detection based on the logarithm interval isolation method is put forward.For the distribution differences between the data dimensions,the Mahalanobis distance measure method is used.On the basis of the Mahalanobis distance between each sample point and the center of the data distribution,a logarithmic interval isolation strategy is designed.According to the strategy,many tall trees are constructed and integrated into a logarithmic interval isolation forest anomaly detector,which selects a data set of abnormal samples with both detection accuracy and efficiency.With a service data set from the server and a provincial power grid dispatch center as the training and testing samples,the advanced performance of the proposed method in the AUC value in the anomaly detection and its feasibility in the actual system application are verified.
作者 王锋 高欣 贾欣 任昺 查森 WANG Feng;GAO Xin;JIA Xin;REN Bing;ZHA Sen(School of Modern Post,Beijing University of Posts and Telecommunications,Haidian District,Beijing 100876,China;School of Artificial Intelligence,Beijing University of Posts and Telecommunications,Haidian District,Beijing 100876,China)
出处 《电网技术》 EI CSCD 北大核心 2021年第12期4818-4827,共10页 Power System Technology
关键词 电力调度自动化系统异常检测 局部异常 马氏距离 集成学习 对数区间隔离 power dispatch automation system anomaly detection local outlier Mahalanobis distance ensemble learning log-interval isolation
  • 相关文献

参考文献6

二级参考文献60

  • 1康重庆,夏清,张伯明.电力系统负荷预测研究综述与发展方向的探讨[J].电力系统自动化,2004,28(17):1-11. 被引量:499
  • 2王正风,黄太贵,吴迪,江山立,葛斐,汪胜和,张剑,张虹.广域测量技术在电力系统中的应用[J].华东电力,2007,35(5):32-36. 被引量:22
  • 3余贻鑫.面向21世纪的智能配电网.南方电网技术研究,2006,2(6):14-16.
  • 4薛安荣,鞠时光,何伟华,陈伟鹤.局部离群点挖掘算法研究[J].计算机学报,2007,30(8):1455-1463. 被引量:96
  • 5森欣司.自律分散系统入门--从系统概念到应用技术[M].徐政.谭永东.泽.北京:科学出版社,2008:60-73.
  • 6European Commission. European technology platform smart grids: vision and strategy for Europe's electricity networks of the future[EB/OL]. [2011-09-05]. http://ec, europa, eu/ researeh/energy/pdf/smartgrids en. pdf.
  • 7United States Department of Energy Office of Electric Transmission and Distribution. Grid 2030~ a national vision for electricity's second 100 years[EB/OL]. [2011-09-05]. http~// climate vision, gov/sectors/electricpower/pdfs/electricvision, pdf.
  • 8EPRI. Advanced distribution automation program overview [EB/OL]. [2011- 09- 05]. http://mydocs, epri. com/docs/ Portfolio/PDF/2008_P124. pdf.
  • 9LIU C C, JUNG Juhwan, HEYDT G T, et al. The strategic power infrastructure defense (SPID) system[J]. IEEE Control Systems Magazine, 2000, 20(4): 40 52.
  • 10SCHOEMAKER P J H. When and how to use scenario--a heuristic approach with illustration [J]. Forecasting, 1991, 10(6) : 549-564.

共引文献289

同被引文献197

引证文献17

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部