期刊文献+

动力锂离子电池套管式空气冷却结构模拟

Simulation of sleeve-type air cooling structure for power lithium-ion battery
下载PDF
导出
摘要 提出一种采用套管式结构的新型空气冷却电池热管理系统,空气在通道内交错逆向流动来降低电池组的温度和改善温度均匀性。采用三维传热模型,研究了冷却通道数量和入口气体流速对电池最高温度和最大温差的影响以及传热机理。结果表明,套管式冷却通道可以降低电池的最高温度,并改善温度均匀性。入口气体流速的增加,对降低电池最高温度有积极作用,但也会引起电池的局部温差增大。同时还发现气体流道数和入口流速均存在饱和值。当通道数大于4,流速大于2 m/s时,温度变化幅度均显著减小。 In this study,a novel air-cooling battery thermal management system was proposed.A sleeve type structure was used to reduce the temperature and improve the temperature uniformity of the battery by arranging the air flow in the staggered and countercurrent directions in the channel.A three-dimensional heat-transfer model was conducted to investigate the effects of the cooling channels amount and inlet gas flow rate on the maximum temperature and temperature difference of the battery.The heat transfer mechanism of the sleeve structure was also verified.The results indicate that optimizing the structure of cooling channel can efficiently lower the battery temperature and improve the uniformity of the temperature field.In addition,increasing the inlet gas flow rate has a positive effect on reducing the maximum temperature of the battery,but it might also cause the increase of local temperature difference.It is also found that the number of gas flow channels and the inlet velocity have saturation values.When the number of channels is greater than 4 and the velocity is greater than 2 m/s,the temperature change would be significantly decreased.
作者 林雄超 邵苛苛 盛喆 LIN Xiongchao;SHAO Keke;SHENG Zhe(School of Chemistry and Environmental Engineering,China University of Mining and Technology(Beijing),Beijing 100083,China)
出处 《电源技术》 CAS 北大核心 2021年第12期1554-1557,共4页 Chinese Journal of Power Sources
基金 国家自然科学基金(21978319)。
关键词 电池热管理 空气冷却 套管式 交错逆流 battery thermal management air cooling sleeve type structure staggered and countercurrent
  • 相关文献

参考文献2

二级参考文献15

  • 1RICHARD M N, DAHN J R. Predicting electrical and thermal abuse behavior of practical lithium-ion cells from accelerating rate ca- lorimeter studies on small samples in electrolyte [J]. Journal of Power Sources, 1999,79(2) .- 135-142.
  • 2BIENSAN P, SIMON B, PERES J P. On safety of lithium-ion cells [J]. Journal of Power Sources, 1999(81/82) : 906-912.
  • 3KAWAMURA T, KIMURA A, EGASHIRA M. Thermal stability of alkyl carbonate mixed-solvent electrolytes for lithium-ion cells [J]. Journal of Power Sources, 2002,104(2) : 260-264.
  • 4PASQUIER A D, DISMA F, BOWMER T. Differential scanning calorimetry study of the reactivity of carbon anodes in plastic li-ion batteries [J]. Journal of the Electrochemical Society, 1998,145 (2) : 472-477.
  • 5MALEKI H, DENG G, KERZHNER H I. Thermal stability of Li-ion cells and components [J]. Journal of the Electrochemical Society, 2000, 147(I 2) : 4470-4475.
  • 6RANDOLPH A L, MARCUS J P. Abuse testing of lithium-ion bat- teries characterization of the overcharge reaction of LiCoOJgraphite cells[J].Journal of the Electrochemical Society, 2001,148(8) :A838- A844.
  • 7TOBISHIMA S ,YAMAKI J. A consideration of lithium cell safety [J]. Journal of Power Sources, 1999(81/82) : 882-886.
  • 8OESTEN, HEIDER, SCHMIDT. Advanced electrolytes [J]. Solid State Ionies, 2002,148(3/4) : 391-397.
  • 9冯祥明,郑金云,李荣富,李中军.锂离子电池安全[J].电源技术,2009,33(1):7-9. 被引量:24
  • 10潘建亮.我国发展新能源汽车之分析[J].汽车工业研究,2010(3):6-9. 被引量:36

共引文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部