期刊文献+

椭圆方程系数识别问题的正则化解

Regularization Solution for Coefficient Identification in Elliptic Equation
下载PDF
导出
摘要 研究了一般椭圆型方程系数反问题正则化解的收敛速度,这里向量的维数仅与区域相关.利用Tikhonov正则化方法,将不适定问题转化为最优化问题,并构造相应的能量泛函.由Lax Milgram引理,首先给出了变分等式,并利用变分等式得到解的唯一性;其次,利用源条件和先验估计,获得正则化解的收敛速度.当向量为非散度算子时,原问题可化为非散度型椭圆方程问题,更具有一般性和广泛性. In this paper,the convergence rate of Tikhonov regularized solution for the identification of coefficients of general elliptic equations is studied,where the dimension of the vector is only related to the region.By using Tikhonov regularization method,the ill posed problem is transformed into an optimization problem,and the corresponding functional is constructed.Based on the lax Milgram lemma,the variational equation is given,and the uniqueness of the solution is obtained by using the variational equation.Secondly,the convergence rate of the regularized solution is obtained by using the source condition and a priori estimation.When the vector is a non divergence operator,the original problem is transformed into a non divergence elliptic equation problem,which would be more general and universal.
作者 何琴 王谦 HE Qin;WANG Qian(School of Mathematics and Physics,Lanzhou Jiaotong University,Lanzhou 730070,China)
出处 《兰州交通大学学报》 CAS 2021年第6期111-117,共7页 Journal of Lanzhou Jiaotong University
基金 国家自然科学基金(11961042,61663018) 兰州交通大学“百名青年优秀人才培养计划” 甘肃省自然科学基金资助项目(18JR3RA122)。
关键词 反问题 椭圆方程 TIKHONOV正则化 收敛速度 inverse problem elliptic equation Tikhonov regularization convergence rate
  • 相关文献

参考文献1

二级参考文献16

  • 1Hào D,Hien P,Sahli H.Stability results for a Cauchy problem for an elliptic equation[J].Inverse Probl,2007,23:421-461.
  • 2Lavrentèv M M,Romanov V G.Ill-Posed Problems of Mathematical Physics and Analysis[M].Providence,RI:American Mathematical Society,1986.
  • 3Tikhonov A,Arsenin V.Solutions of Ill-Posed Problems[M].New York:Winston,1977.
  • 4Gorenflo R.Funktionentheoretische Bestimmung des Aussenfeldes zu einer zweidimensionalen magnetohydrostatischen Konfiguration[J].Zeitschrift fur Angewandte Mathematik und Physik,1965,16:279-290.
  • 5Franzone P,Magenes E.On the inverse potential problem of electrocardiology[J].Calcolo,1979,16(4):459-538.
  • 6Johnson C.Computational and numerical methods for bioelectric field problems[J].Crit Rev Biomed Eng,1997,25(1):1-81.
  • 7Vani C,Avudainayagam A.Regularized solution of the Cauchy problem for the Laplace equation using Meyer wavelets[J].Math Comput Modelling,2002,36(9/10):1151-1159.
  • 8Hadanard J.Lectures on Cauchy's Problem in Linear Partial Differential Equations[M].New York:Yale University Press,1923.
  • 9Cannon J,Miller K.Some problems in numerical analytic continuation[J].SIAM J Numer Anal,1965,2:87-98.
  • 10Falk R,Monk P.Logarithmic convexity for discrete harmonic functions and the approximation of the Cauchy problem for Poisson's equation[J].Math Comp,1986,47(175):135-149.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部