期刊文献+

基于条纹图相位匹配的立体测量技术研究

Research on Stereo Measurement Technology Based on Fringe Pattern Phase Matching
下载PDF
导出
摘要 基于多相机机器视觉的三维测量技术,需要在被测物体表面寻找特征点,根据特征点在各相机中图像位置的不同来确定其在空间中的三维坐标。如果被测物体特征点不明显,又或者较少的话,需要人为粘贴标记点。因此,测量结果的分辨率不高、测量过程也比较烦琐。通过条纹投影给被测空间添加二维相位分布,以此来实现对被测物体连续的特征点标记将能够解决上述问题。文章详细介绍了该技术中的相机标定、全局相位求解以及面形复原全过程,可为机器视觉在三维测量中的应用提供借鉴。 3D measurement technology based on multi camera machine vision needs to find feature points on the surface of the measured object.According to the image position corresponding to the feature point in different cameras,the spatial three-dimensional coordinates of the feature point are determined.If the feature points of the measured object are not obvious or there are few feature points,it is necessary to manually paste the marked points as the feature points.Therefore,the resolution of the measurement results is not high,and the measurement process is cumbersome.The two-dimensional phase distribution is added by projecting the fringe pattern to the measured space.In order to realize the continuous feature point marking of the measured object,the above problems can be solved.This paper introduces the whole process of camera calibration,global phase solution and surface shape restoration in detail.It provides a reference for the application of machine vision in three-dimensional measurement.
作者 朱荣刚 张敏涛 朱霞 陈鹏 ZHU Ronggang;ZHANG Mintao;ZHU Xia;CHEN Peng(College of Network and Communication Engineering,Jinling Institute of Technology,Nanjing 211169,China)
出处 《现代信息科技》 2021年第16期93-95,99,共4页 Modern Information Technology
关键词 三维测量 相位测量 条纹投影 机器视觉 three dimensional measurement phase measurement fringe projection machine vision
  • 相关文献

参考文献6

二级参考文献43

  • 1郁春潮.广角镜头的摄像机非线性标定技术[J].长江大学学报(自科版)(上旬),2006,3(2):25-27. 被引量:5
  • 2李鹏,王军宁.摄像机标定方法简述[J].传感器世界,2007,13(3):21-24. 被引量:12
  • 3封举富.计算机视觉若干问题研究[M].北京:北京大学,1997..
  • 4郑南宁,计算机视觉和模式识别,1998年
  • 5封举富,学位论文,1997年
  • 6Minoru Asada, Takamaro Tanaka. Visual Tracking Of Unknown Moving Object By Adaptive Binocular Visual Servoing.Proceeding of the 1999 IEEE International Conference on Multisensor Fusion and Intelligent Systems;
  • 7Vallerand Steve, Kanbara Masayuki, Yokoya Naokazu. Binocular Vision-Based Augmented Reality System With An Increased Registration Depth Using Dynamic Correction Of Feature Positions. Proceedings. Of the 2003 IEEE,Virtual Reality.March 2003; Vol.22~26,p27
  • 8Kei Okada, Masayuki Inaba. Integration Of Real-Time Binocular Stereo Vision And Whole Body Information For Dynamic Walking Navigation Of Humanoid Robot. IEEE Conference on Multisensor Fusion and Intergration for Intelligent Systems 2003
  • 9Yajun Fang, Ichiro Masaki, and Berthold Horn. Depth-Based Target Segmentation for Intelligent Vehicles: Fusion of Radar and Binocular Stereo. IEEE Transactions On Intelligent Transportation Systems, 2002;3(3)
  • 10Clark F. Olson, Habib Abi-Rached, Ming Ye, Jonathan P.Hendrich. Wide-Baseline Stereo Vision For Mars Rovers.Proceedings Of The 2003 IEEE/RSJ Intl. Conference On Intelligent Robots And Systerms. October 2003

共引文献165

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部