期刊文献+

基于注意力和多尺寸卷积的超分辨率算法研究

Research on super resolution algorithm based on attention and multi-size convolution
下载PDF
导出
摘要 为了解决深层卷积模型的超分辨率技术计算量大、融合的特征不够全面的问题,模型结构不再从深度上进行加深,而是从宽度上进行扩展。对输入的一张特征图进行多尺寸的卷积处理,在结构上融合残差结构、压缩模块和改进的通道注意力模块,融合多尺寸的特征图的同时灵活运用高、低频信息,最终达到提高重建图像质量的效果。实验结果表明:与目前较为流行的超分辨率算法相比,在参数量上有了一定的减少,且在峰值信噪比和结构相似性上有着良好的表现。 In order to solve the problem of large amounts of computation of super-resolution technology of deep layer convolution model, and fusion features are not comprehensive, a model structure is designed no longer deepened in depth, but expanded in width.Multi-size convolution processing is performed on an input feature map, residual structure, compression module and improved channel attention module are fused structurally, and the high-frequency and low-frequency information are flexibly used while fusing the multi-size feature map, and finally achieve the effect of improving the quality of the reconstructed image.The experimental results show that, compared with the currently popular super-resolution algorithm, the amount of parameters are reduced to a certain extent, and it has good performance in peak signal-to-noise ratio and structural similarity.
作者 梁超 黄洪全 陈延明 LIANG Chao;HUANG Hongquan;CHEN Yanming(School of Electrical Engineering,Guangxi University,Nanning 530004,China)
出处 《传感器与微系统》 CSCD 北大核心 2021年第12期85-88,共4页 Transducer and Microsystem Technologies
基金 国家自然科学基金资助项目(51567004)。
关键词 超分辨率 多尺寸卷积 残差结构 通道注意力模块 super-resolution multi-size convolution residual structure channel attention module
  • 相关文献

参考文献4

二级参考文献18

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部