期刊文献+

噪声相关非线性系统加权观测融合估计算法 被引量:1

Weighted measurement fusion estimation algorithm for nonlinear system with correlated noises
下载PDF
导出
摘要 为了提高非线性系统的估计精度,基于Gauss-Hermite逼近以及加权最小二乘法,提出了噪声相关非线性系统加权观测融合容积卡尔曼滤波器(WMF-CKF)。利用去相关方法去除相关噪声之间的相关性,将原系统转化为噪声互相独立的非线性系统。进而采用Gauss-Hermite逼近方法对多传感器观测数据进行数据压缩。为了降低计算负担,本文采用离线方式计算加权系数矩阵,并最终实现了多传感器非线性系统加权观测融合。与传统的最优集中式融合(CMF)算法相比,本文所提出的融合算法在精度上略低,但可以明显减少计算负担。所提融合算法为非线性多传感器融合估计问题提供了一种有效解决方法。一个带4传感器噪声相关非线性系统的仿真例子说明了算法的正确性。 In order to improve the estimation precision of nonlinear systems, based on Gauss-Hermite approximation and weighted least square method, a weighted measurement fusion cubature Kalman filter(WMF-CKF) for nonlinear systems with correlated noises is proposed.Decorrelation method is used to remove the correlation between the correlated noises, then transforms the original system into a non-linear system with independent noises.And then the Gauss-Hermite(G-H) approximation method is used to compress the multi-sensor measurement data.In order to reduce the computational burden, the weighting coefficient matrix is calculated in an offline manner, and finally the weighted measurement fusion of multi-sensor nonlinear system is realized.Compared with the traditional optimal centralized fusion(CMF) algorithm, the proposed fusion algorithm is slightly lower in precision, but can significantly reduce the computational burden.The fusion algorithm provides an effective solution to the nonlinear multi-sensor fusion estimation problem.A simulation example of a non-linear system with 4-sensor noise correlation shows the correctness of the algorithm.
作者 赵明 李云 ZHAO Ming;LI Yun(School of Computer and Information Engineering,Harbin University of Commerce,Harbin 150028,China)
出处 《传感器与微系统》 CSCD 北大核心 2021年第12期145-148,152,共5页 Transducer and Microsystem Technologies
基金 哈尔滨商业大学校基金资助项目(18XN064)。
关键词 非线性系统 加权观测融合 Gauss-Hermite逼近 容积卡尔曼滤波器 nonlinear system weighted measurement fusion(WMF) Gauss-Hermite approximation cubature Kalman filter(CKF)
  • 相关文献

参考文献4

二级参考文献85

  • 1Sun, Shuli, Tian, Tian.Optimal linear estimators for systems with random measurement delays[J].控制理论与应用(英文版),2011,9(1):76-82. 被引量:3
  • 2Arulampalam S,Maskell S,Gordon N,et al.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J].IEEE Trans on Signal Processing,2002,50(2):174-188.
  • 3Thrun S,Fox D,Burgard W,et al.Robust monte carlo localization for mobile robots[J].Artificial Intelligence,2001,128(1-2):99-141.
  • 4Julier S J,Uhlmann J K,Durrant-Whyten H F.A new approach for filtering nolinear system[A].Proc of the American Control Conf[C].Washington:Seattle,1995:1628-1632.
  • 5Julier S J,Uhlmann J K.A general method for approximating nonlinear transformations of probability distributions[EB/OL].http://www.robots.ox.ac.uk/~siju/work/publications/Unscented.zip,1997-09-27.
  • 6Julier S J,Uhlmann J K.A consistent,debiased method for converting between polar and Cartesian coordinate systems[A].The Proc of AeroSense:The 11th Int Symposium on Aerospace/Defense Sensing,Simulation and Controls[C].Orlando,1997:110 -121.
  • 7Julier S J,Uhlmann J K.A new extension of the Kalman filter to nonlinear systems[A].The Proc of AeroSense:11th Int Symposium Aerospace/Defense Sensing,Simulation and Controls[C].Orlando,1997:54-65.
  • 8Julier S J.A skewed approach to filtering[A].The Proc of AeroSense:12th Int Symposium Aerospace/Defense Sensing Simulation Control[C].Orlando,1998:271-282.
  • 9Julier S J.The spherical simplex unscented transformation[A].American Control Conf[C].Denver,2003:2430-2434.
  • 10Julier S J,Uhlmann J K,Durrant-Whyte H F.A new approach for the nonlinear transformation of means and covariances in filters and estimators[J].IEEE Trans on Automatic Control,2000,45(3):477-482.

共引文献244

同被引文献15

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部