摘要
近年来,机器学习发展迅速,在广泛应用于各个领域的同时取得了许多理论突破。它为系统提供访问数据的能力,通过从过去的经验中学习和改进来解决复杂问题,使机器能够执行认知功能。文中将基于改进的Stabilized Barzilai-Borwein(SBB)方法自动计算步长,与SVRG结合形成新的算法SVRG-SBB,并从理论上证明新算法收敛,能够有效地解决机器学习中的常见问题。
In recent years,machine learning is developing rapidly and has made many theoretical breakthroughs while being widely applied in various fields.It provides the system with the ability to access data,solve complex problems by learning from past experience and improving,and enable the machine to perform cognitive functions.In this paper,the step size is automatically calculated based on the improved Stabilized Barzilai-Borwein(SBB) method,which is combined with SVRG to form a new algorithm SVRG-SBB.It is proved theoretically that the new algorithm converges and can effectively solve the common problems in machine learning.
作者
史卫娟
Adibah Shuib
Zuraida Alwadood
SHI Weijuan;Adibah Shuib;Zuraida Alwadood(School of Mathematics and Finance,Hunan University of Humanities,Science and Technology,Loudi 417000,China;Faculty of Computer Science and Mathematical,MARA University of Technology,Shah Alam 40450,Malaysia)
出处
《现代信息科技》
2021年第15期109-112,共4页
Modern Information Technology
基金
2019年湖南省教育厅科学研究项目(19C0976)。
关键词
随机优化
SBB步长
机器学习
stochastic optimization
SBB step size
machine learning