期刊文献+

基于复杂网络的Psor链路预测算法 被引量:2

A Psor Link Prediction Algorithm Based on Complex Network
下载PDF
导出
摘要 复杂网络领域中,链路预测在网络演化规律的研究中被广泛应用,具有巨大的实际应用价值。针对现有的基于网络拓扑的链路预测方法存在预测精度偏低的问题,提出了一种基于复杂网络的Psor链路预测算法。该算法综合节点自身和邻居节点的度,定义了节点的Psor指数和Psor相似性指标进行链路预测。该算法能够全面考虑复杂网络的局部结构信息,更加准确地对复杂网络链路进行预测。仿真结果表明,Psor链路预测算法的预测精度相比8种经典的相似性算法的预测精度最高提升了37.96%。 In the field of complex networks,link prediction is widely used in the study of network evolution laws and it has great practical application value.For the problem of low prediction accuracy of existing link prediction methods based on network topology,a Psor link prediction algorithm based on complex networks is proposed.This algorithm integrates the degree of the node itself and neighbor nodes to define the Psor index of the node and Psor similarity index for link prediction.The algorithm can comprehensively consider the local structure information of complex networks and predict the links of complex networks more accurately.The simulation results show that the prediction accuracy of the Psor link prediction algorithm is up to 37.96%,higher than that of the eight classic similarity algorithms.
作者 邹列 张月霞 ZOU Lie;ZHANG Yuexia(School of Information and Communication Engineering,Beijing Information Science and Technology University,Beijing 100101,China;Key Laboratory of Modern Measurement&Control Technology,Ministry of Education,Beijing Information Science and Technology University,Beijing 100101,China;Beijing Key Laboratory of High Dynamic Navigation Technology,Beijing Information Science and Technology University,Beijing 100101,China)
出处 《电讯技术》 北大核心 2021年第12期1579-1585,共7页 Telecommunication Engineering
基金 国家重点研发计划(2020YFC1511704) 国家自然科学基金资助项目(61971048) 北京市科技计划课题(Z191100001419012) 北京信息科技大学2020年促进高校内涵发展科研水平提高项目(2020KYNH212)。
关键词 复杂网络 链路预测 节点的度 Psor指数 相似性算法 complex network link prediction degree of nodes Psor index similarity algorithm
  • 相关文献

参考文献3

二级参考文献80

  • 1叶鹰.h指数和类h指数的机理分析与实证研究导引[J].大学图书馆学报,2007,25(5):2-5. 被引量:115
  • 2金碧辉,Rousseau Ronald.R指数、AR指数:h指数功能扩展的补充指标[J].科学观察,2007,2(3):1-8. 被引量:179
  • 3GETOOR L,DIEHL C P.Link mining:a survey[J].ACM SIGKDD Explorations Newsletter,2005,7(2):3-12.
  • 4SARUKKAI R R.Link prediction and path analysis using markov chains[J].Computer Networks,2000,33(1-6):377-386.
  • 5ZHU J,HONG J,HUGHES J G Using markov chains for link prediction in adaptive web sites[J].Lect Notes Comput Sci,2002,2311:60-73.
  • 6POPESCUL A,UNGAR L.Statistical relational learning for link prediction[C] //Proceedings of the Workshop on Learning Statistical Models from Relational Data.New York:ACM Press,2003:81-87.
  • 7O'MADADHAIN J,HUTCHINS J,SMYTH P.Prediction and ranking algorithms for event-based network data[C] //Proceedings of the ACM SIGKDD 2005.New York:ACM Press,2005:23-30.
  • 8LIN D.An information-theoretic definition of similarity[C] //Proceedings of the 15th Intl Conf Mach.Learn..San Francisco,Morgan Kaufman Publishers,1998:296-304.
  • 9LIBEN-NOWELL D,KLEINBERG J.The link-prediction problem for social networks[J].J Am Soc Inform Sci Technol,2007,58(7):1019-1031.
  • 10CLAUSET A,MOORE C,NEWMAN M E J.Hierarchical structure and the prediction of missing links in networks[J].Nature,2008,453:98-101.

共引文献258

同被引文献20

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部