摘要
舌体分割是计算机辅助中医舌象诊断的第一步,但其易受舌附近人体组织的影响,从而使分割难度增大。如何使用机器学习优化舌体图像的分析流程是当前研究的热点之一。针对此问题,应用卷积神经网络MaskR-CNN进行分割获得的舌体边缘比较准确,能提高舌体图像分割的准确性。基于Mask R-CNN的舌体分割首先收集舌体图像数据,对信息进行数据清洗,构建出舌体图像数据平台。然后,采用Mask R-CNN训练得到舌体分割模型,最后分别使用训练好的模型和GrabCut算法分割4种特征舌体图像,对两种方法的分割效果进行对比及分析。实验结果表明,该方法在分割效果等方面均优于GrabCut算法,在评价指标中评估结果准确率均高于90%,可以为舌体图像分割、中医舌象诊断提供技术支持。
Tongue segmentation is the first step of computer-aided tongue diagnosis in traditional Chinese medicine,but it is easily affected by the lips and skin around the tongue,which makes segmentation become more difficult.How to optimize the analysis process of tongue image by machine learning is one of the hot-spots in current research.In the background of this problem,the edge of tongue obtained by using convolutional neural network Mask R-CNN is more accurate,which can improve the accuracy of tongue image segmentation.The first step of the method was collected tongue image data,and then cleaned the tongue image information to construct a tongue image data platform.Then,the tongue segmentation model was obtained by Mask R-CNN training.Finally,four kinds of characteristic tongue images were segmented by using the trained model and GrabCut algorithm respectively.The segmentation effects of the two methods were compared and analyzed.The experimental result showed that this method was superior to other classical methods in segmentation effect,and the accuracy of evaluation results is above 90%,thus it can provide technical support for tongue image segmentation and tongue image diagnosis.
作者
吴星瑾
缪传鹏
李鹏
罗爱静
WU Xingjin;MIAO Chuanpeng;LI Peng;LUO Aijing(School of Informatics,Hunan University of Chinese Medicine,Changsha 410208,Hunan,China)
出处
《中国卫生信息管理杂志》
2021年第6期843-848,共6页
Chinese Journal of Health Informatics and Management
基金
国家重点研发计划《中医智能舌诊系统及数据平台研发与应用》(项目编号:2017YFC1703306)
湖南省科技厅重点项目《基于大数据的中西医结合防治脑梗死创新技术研究及推广应用》(项目编号:2018JJ2301)
湖南省卫生健康委科研项目《基于图卷积神经网络的前列腺癌精准“诊-预-疗”关键技术研究》(项目编号:202112072217)。