期刊文献+

建筑能耗预测的机器学习回归模型研究 被引量:8

Study on Machine Learning Regression Model for Prediction of Building Energy Consumption
下载PDF
导出
摘要 目的使用回归模型对建筑样本进行机器学习训练,筛选出适用于预测建筑能耗的模型。方法以香港地区1923个商用建筑作为研究对象,通过网络信息收集的方式获取建筑的物理参数、使用参数以及环境参数,采用PCA算法对高维度数据进行降维处理,并对相关数据进行了归一化处理;选取13种常见的机器学习回归模型作为建筑能耗预测模型,采用平均绝对误差MAE、绝对中位差MAD和决定系数R^(2)作为模型性能评价指标,采用StratifiedKFold分层采样法对总样本进行划分,并对划分后样本进行机器学习训练。结果Bagging、XGBoost、Random Forest、Extra Trees集成学习回归模型对建筑能耗预测的准确性远优于其他9种模型,其中XGBoost有最小的MAE(6.47)和MAD(2.95),Random Forest有最大的R^(2)(0.97)。结论5种集成学习回归模型中除了分类算法外,Bagging、XGBoost、Random Forest、Extra Trees 4种模型对建筑能耗预测较优。XGBoost对数据较为完整的建筑能耗预测准确度最高,Extra Trees对于数据缺失严重的建筑预测准确度优于XGBoost。 The purpose of this paper is to choose the appropriate machine learning regressions as building energy consumption prediction model.1923 commercial buildings in Hong Kong taken as samples,buildings′parameters on their physical features,utilization features and environmental features are collected by Internet.And high dimension data in parameters are adjusted by PCA algorithm.13 kinds of regressions were chosen as prediction models of building energy consumption,with index MAE,MAD and R^(2) to evaluate their performance.The whole samples were divided by StratifiedKFold algorithm,and then trained by machine learning regressions.Prediction results of the building energy consumption by Bagging,XGBoost,Random Forest and Extra Trees model,which are based on ensemble learning,were more accurate than that of other models,XGBoost got minimum value on MAE(6.47)and MAD(2.95)and Random Forest got maximum value on R^(2)(0.90801).In addition,the main parameters that affect on building energy consumption are building area,stand alone building,wind parameter in 500 meter height,rental status,point solar radiation,height and number of floors.In addition to the classification algorithm,among the 5 ensemble learning regression models involved in this article,Bagging,XGBoost,Random Forest and Extra Trees perform good at building energy consumption predict.Among them,XGBoost is the best regression to predict the energy consumption of building with complete data,while Extra Trees perform better at samples with lack of data.
作者 李继伟 冯国会 徐丽 LI Jiwei;FENG Guohui;XU Li(School of Municipal and Environmental Engineering,Shenyang Jianzhu University,Shenyang,China,110168)
出处 《沈阳建筑大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第6期1098-1106,共9页 Journal of Shenyang Jianzhu University:Natural Science
基金 国家自然科学基金项目(51778376)。
关键词 建筑能耗 机器学习 回归模型 集成学习 性能评价指标 building energy consumption machine learning regression model ensemble learning performance evaluation index
  • 相关文献

参考文献10

二级参考文献45

  • 1谢继红,乔木,陈东,许树学.利用工质设计实现制冷热泵近卡诺循环的分析[J].天津科技大学学报,2006,21(1):79-83. 被引量:2
  • 2中华人民共和国住房和城乡建设部,JGJ134-2010夏热冬冷地区居住建筑节能设计标准[s].北京:中国建筑工业出版社,2010.
  • 3中华人民共和国建设部.GB50009-2001建筑结构荷载规范[S].北京:中国建筑工业出版社,2002..
  • 4中华人民共和国建设部.GB50189-2005公共建筑节能设计标准[S].北京:中国建筑工业出版社,2005.
  • 5蒋楚材.铝合金叶片遮阳百叶窗帘:中国,2179445[P].1994-10-12.
  • 6张一飞.一种改进的升降式防盗百叶窗:中国,201433690[P].2010-03-31.
  • 7从华山.多功能可升降式安全防盗百叶窗:中国,200992940[P].2007-12-19.
  • 8刘尚银.收放式多功能百叶窗:中国,2581665[P].2003-10-22.
  • 9赵久昱.一种电控防盗百叶窗:中国,201416368[P].2010-03-03.
  • 10清华大学建筑节能研究中心. 中国建筑节能年度发展研究报告:2015[M]. 北京:中国建筑工业出版社,2015.

共引文献133

同被引文献80

引证文献8

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部