期刊文献+

融合时序注意力的行为识别

Action Recognition Based on Temporal Attention Fusion
下载PDF
导出
摘要 为了获取图像序列中的时序信息,构建了卷积神经网络和时序注意力结合的网络模型。卷积神经网络用于捕捉空间特性,时序注意力机制用于捕捉序列间各样本之间的局部关联,通过对局部关联性加权求和得到序列时序特征。最后利用训练好的网络模型进行了测试,并对测试结果进行了展示。 In order to obtain the temporal information in the image sequence,a network model combining convolutional neural network and temporal attention is constructed.The convolutional neural network is used to capture the spatial characteristics,and the temporal attention mechanism is used to capture the local correlation between the samples in the sequence.The temporal characteristics of the sequence are obtained by weighted summation of the local correlation.Finally,the trained network model is used to test and the test results are shown.
作者 曹新颖 杨文杰 赵建光 CAO Xinying;YANG Wenjie;ZHAO Jianguang(Hebei University of Architecture,Zhangjiakou Hebei 075000;China Agricultural University,Beijing 100083)
出处 《软件》 2021年第11期41-43,171,共4页 Software
基金 基于5G的VR场景下冰雪突发事故高精度定位技术研究(20470302D) 基于视频图像序列的冰雪事故检测研究(XY202151)。
关键词 行为识别 注意力机制 稀疏采样 action recognition attention mechanism sparse sampling
  • 相关文献

参考文献3

二级参考文献15

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部