期刊文献+

基于反向传播神经网络估算大气光学湍流廓线 被引量:4

Estimation of Atmospheric Optical Turbulence Profile Based on Back Propagation Neural Network
原文传递
导出
摘要 大气光学湍流是与光电工程系统设计、应用密切相关的基本参数。通过仪器实地测量大气光学湍流廓线时会受到人力、物力、财力等多种条件的限制,因此依据常规气象参数估算大气光学湍流强度具有十分重要的意义。提出一种结合遗传算法的反向传播(GA-BP)神经网络。首先,基于Tatarski大气光学湍流参数化方案,利用HMNSP99外尺度模式估算了大气光学湍流廓线;其次,尝试基于实测数据训练BP神经网络,并结合遗传算法估算大气光学湍流廓线。将两种方法估算的大气光学湍流廓线与实测的廓线进行对比,结果表明:GA-BP神经网络模式估算值与实测值的均方根误差(RMSE)比HMNSP99模式的RMSE小,表明利用GA-BP人工神经网络模式估算大气光学湍流廓线是一种可行的方法。 Atmospheric optical turbulence is the fundamental parameter closely related to the design and application of optoelectronic systems.The field measurements of atmospheric optical turbulence profiles by instruments are limited by labor,materials,financial resources,and other conditions.Therefore,it is of great significance to estimate the intensity of atmospheric optical turbulence according to the conventional meteorological parameters.A back propagation combined with genetic algorithm(GA-BP)neural network is proposed.First,based on Tatarski atmospheric optical turbulence parameterization scheme,the HMNSP99 outer-scale model is used to estimate the optical turbulence profiles;second,attempting to construct BP artificial neural network combined with genetic algorithm,which are trained by measured data to predict atmospheric optical turbulence profiles.The atmospheric optical turbulence profiles estimated by the two methods are compared with the measured profiles.The results show that the root mean square error(RMSE)between the estimated values of GA-BP neural network and measured values is smaller than that of HMNSP99 model,which proves that it is a feasible method to use GA-BP artificial neural network model to estimate the optical turbulence profiles.
作者 毕翠翠 青春 钱仙妹 孙刚 刘庆 朱文越 许满满 韩亚娟 郭一鸣 Bi Cuicui;Qing Chun;Qian Xianmei;Sun Gang;Liu Qing;Zhu Wenyue;Xu Manman;Han Yajuan;Guo Yiming(Key Laboratory of Atmospheric Optics,Anhui Institute of Optics and Fine Mechanics,Hefei Institutes of Physical Science,Chinese Academy of Sciences,Hefei,Anhui 230031,China;Science Island Branch of Graduate School,University of Science and Technology of China,Hefei,Anhui 230026,China;Advanced Laser Technology Laboratory of Anhui Province,Hefei,Anhui 230037,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2021年第21期15-24,共10页 Laser & Optoelectronics Progress
基金 中国科学院科技创新重点实验室基金(CXJJ-19S028)。
关键词 大气光学 光学湍流廓线 Tatarski模式 反向传播神经网络 探空测量 atmospheric optics optical turbulence profile Tatarski model back propagation neural network sounding measurement
  • 相关文献

参考文献12

二级参考文献68

共引文献97

同被引文献47

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部