期刊文献+

64位双精度矩阵分解的优化和硬件实现

Optimization and hardware implementation of 64-bit double-precision matrix decomposition
下载PDF
导出
摘要 矩阵分解是线性代数中最重要的运算之一,广泛应用于现代通讯和控制。文章提出一种针对浮点矩阵的GR-QR(Givens rotation QR)分解一维线性结构,利用GR-QR分解运算过程中的并行特点,提高运算资源利用率,实现任意阶浮点矩阵分解,并设计实现了基于此结构的矩阵分解电路,该电路支持2-32阶双精度浮点矩阵的直接分解。在TSMC28 nm工艺,QR分解器的工作主频为700 MHz,面积为2 mm^(2),计算精度达到10^(-15),性能是1.6 GHz RTX2070的95倍。 Matrix decomposition is one of the most important operations in linear algebra,and is widely used in modern communications and control.This paper presents a one-dimensional linear structure of Givens rotation QR(GR-QR)decomposition for floating-point matrices.It uses the parallel characteristics of GR-QR decomposition in the operation process to improve the utilization of computing resources and achieve arbitrary-order floating-point matrix decomposition.And a matrix decomposition circuit based on this structure is designed and implemented,which supports direct decomposition of 2-32 order double-precision floating-point matrix.In the TSMC28 nm process,the working frequency of the QR resolver is 700 MHz,the area is 2 mm^(2),the calculation accuracy reaches 10^(-15),and its performance is 95 times that of the 1.6 GHz RTX2070.
作者 邱俊豪 宋宇鲲 陈文杰 侯宁 QIU Junhao;SONG Yukun;CHEN Wenjie;HOU Ning(Institute of VLSI Design, Hefei University of Technology, Hefei 230601, China;IC Design Web-cooperation Research Center of Ministry of Education, Hefei University of Technology, Hefei 230601, China;School of Electrical and Control Engineering, Henan University of Urban Construction, Pingdingshan 467000, China)
出处 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2021年第12期1640-1645,共6页 Journal of Hefei University of Technology:Natural Science
基金 国家自然科学基金资助项目(61874156)。
关键词 QR分解 Givens旋转 ASIC实现 硬件加速 一维线性结构 QR decomposition Givens rotation ASIC implementation hardware acceleration one-dimensional linear structure
  • 相关文献

参考文献6

二级参考文献31

  • 1王前,吴淑泉,李韬,冼志妙.三角矩阵求逆的ASIC实现研究[J].微电子学与计算机,2004,21(8):135-136. 被引量:4
  • 2李伟,牛晓丽,韩松.ADSP-TS101S汇编语言编程优化[J].电子测量技术,2006,29(3):94-95. 被引量:3
  • 3徐树方.矩阵计算的理论与方法[M].北京:北京大学出版社,2001.
  • 4KLEMM R. Space-Time Adaptive Processing:Principles and Applications[M]. London: IEE Press, 1998.
  • 5GUERCI. Space-Time Adaptive Processing for Radar [M]. Boston:Arteeh House,2003. 151-156.
  • 6WARD J. Space-time adaptive processing for airborne radar [R]. Technical report 1015, MIT Lincoln Laboratory, Lexington, MA, Dec. 1994.
  • 7张贤达.矩阵分析与应用[M].北京:清华大学出版社,2006.
  • 8ZHENG S L. On-line Parameter Identification Algorithms Based on Householder Transformation [J]. IEEE Trans. Signal Procesing, 1993. 41 (9): 2863-2871.
  • 9Lin GB, Xiao JY,Zhao SP,et al.Tissue-specific expression of CK13 gene and the transcriptional activity of CK13 5′flanking region. Chin J Otorhinolaryngology-Skull Base Surg, 2001,8∶40-44.[林功标,肖健云,赵素萍,等.CK13基
  • 10Rugg E, Magee G, Wilson N, et al. Identification of two novel mutations in keratin 13 as the cause of white sponge naevus. Oral Dis, 1999, 5∶321-324.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部