期刊文献+

应用情绪向量的相似性预测新闻点击量

News Clicks Predicting via the Similarity of Emotion Vectors
下载PDF
导出
摘要 新闻点击量的有效预测有利于把握网络舆情、规范新闻报道、理解用户群体偏好。互联网上大量的文本信息往往蕴含着情感信息,这些信息可能会潜在影响用户,从而影响其在用户之间的传播。现有的预测研究缺乏对文本中情感因素的分析,没有挖掘情绪对传播热度的影响。针对上述问题,从基于情感的内容分析入手,通过建立代表新闻标题情感特征的情绪向量,应用基于相似性计算的协同过滤,研究热点新闻标题中情感因素与点击量之间的关系。将热点新闻点击量视为全体用户对新闻的评分,基于情绪向量的相似性计算和邻居选择,采用协同过滤算法预测热点新闻的时均点击量。在网易热点新闻数据集上的实验结果表明,基于情绪向量对热点新闻点击量的预测优于基于词频的对照方法,在选择的邻居数大于10之后预测误差平均降低3.7%,最小误差降低4.3%,揭示了热点新闻的大众关注度与其情感特征具有相关性。 Effective forecasting of news clicks is conducive to grasping online public opinion,standardizing news reports,and under⁃standing user group preferences.A large amount of text information on the Internet often contains emotional information,which may po⁃tentially affect users and thus affect its spread among users.Existing prediction research lacks the analysis of sentiment factors in the text,and does not explore the influence of sentiment on the popularity of communication.In response to the above problems,starting from content analysis based on emotions,by establishing emotion vectors representing the emotional characteristics of news headlines,and applying collaborative filtering based on similarity calculations,the relationship between emotional factors and clicks in hot news headlines is studied.Regarding hot news hits as the ratings of all users on news,based on the similarity calculation of sentiment vectors and neighbor selection,a collaborative filtering algorithm is used to predict the hourly average hits of hot news.The experimental re⁃sults on the NetEase hot news data set show that the prediction of hot news hits based on sentiment vectors is better than the comparison method based on word frequency.After the number of neighbors selected is greater than 10,the prediction error is reduced by 3.7%on average,and the minimum error is reduced by 4.3%,which reveals that the public attention of hot news is related to its emotional char⁃acteristics.
作者 艾均 毕阳阳 苏湛 AI Jun;BI Yang-yang;SU Zhan(School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处 《软件导刊》 2021年第12期37-42,共6页 Software Guide
基金 国家自然科学青年基金项目(61803264)。
关键词 新闻预测 情绪向量 协同过滤 news prediction emotion vector collaborative filtering
  • 相关文献

参考文献1

二级参考文献10

  • 1林传鼎,无.社会主义心理学中的情绪问题——在中国社会心理学研究会成立大会上的报告(摘要)[J].社会心理科学,2006,21(1):37-37. 被引量:15
  • 2Tsou Benjamin K Y, Kwong O Y, Wong W L. Sentiment and content analysis of Chinese news coverage [ J ]. International Journal of Computer Processing of Oriental Languages, 2005, 18(2) : 171-183.
  • 3Ekman P. Facial expression and emotion [ J]. Americam Psychologist, 1993, 48:384-392.
  • 4Yu Zhang, zhuoming Li, Fuji Ren, Shingo Kuroiwa. Semiautomatic emotion recognition from textual input based on the constructed emotion thesaurus[ C]. Proceedings of 2005 IEEE International Conference on Natural Language Processing and Knowledge Engineering (IEEE NLP-KE' 05). 2005 : 571-576.
  • 5许小颖,陶建华.汉语情感系统中情感划分的研究[C].第一届中国情感计算及智能交互学术会议论文集.2003:199-205.
  • 6Ekman P. An argument for basic emotions [ J]. Cognition and Emotion, 1992, 6: 169-200.
  • 7郑怀德,孟庆海.汉语形容词用法词典[M].北京:商务印书馆,2004.
  • 8Hugo Liu, Henry Lieberman, Ted Selker. A model of textual affect sensing using real-world knowledge [ C ] .Proceedings of the 8th International Conference on Intelligent User Interfaces. 2003: 125-132.
  • 9Hugo Liu, Ted Selker, Henry Lieberman. Visualizing the affective structure of a text document [ C ].Proceedings of Conference on Human Factors in Computing Systems. 2003 : 740-741.
  • 10Hua Wang, Helmut Prendinger, Takeo Igarashi. Communicating emotions in online chat using physiological sensors and animated text [ C ].Proceedings of Conference on Human Factors in Computing Systems. 2004: 1171- 1174.

共引文献381

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部