期刊文献+

基于决策树模型的成都市短时交通流预测

Forecast of Short-term Traffic Flow in Chengdu City Based on Decision Tree Model
下载PDF
导出
摘要 随着成都市中心区域人口的快速增加,在特定时段的拥堵现象已经成为限制城市发展的顽疾之一,通过准确的预测未来短时路面的交通信息,能有效的提高特定时段的车的通行效率。本文中根据采集到的相关指标进行数据训练,建立决策树分类模型。使用该模型可根据道路的时段、天气、平均速度等指标预测出短时内该路面的交通流情况,随后相关监管部门可以利用当今社会发达的新媒体进行推送,让市民合理规划出行。 With the rapid increase in the population in the central area of Chengdu,congestion in a certain period has become one of the stubborn diseases that restrict the development of the city.By accurately predicting the short-term road traffic information in the future,it can effectively improve the traffic efficiency of vehicles in a specific period.In this paper,data training is carried out according to the collected relevant indicators,and a decision tree classification model is established.The model can be used to predict the traffic flow on the road in a short period of time based on the time of the road,weather,average speed,and other indicators,and then the relevant regulatory authorities can use the advanced new media today to push,so that the citizens can plan their trips reasonably.
作者 杨京典 Jingdian Yang(Chengdu College of UESTC,610097,China)
出处 《现代交通(中英文版)》 2021年第1期1-6,共6页 Modern Transportation
关键词 中文交通拥堵 机器学习 决策树 预测 Traffic Jam Machine Learning Decision Tree Prediction
  • 相关文献

参考文献6

二级参考文献59

  • 1杨兆升,王媛,管青.基于支持向量机方法的短时交通流量预测方法[J].吉林大学学报(工学版),2006,36(6):881-884. 被引量:81
  • 2RICE J, ZWETE V. A simple and effective method for predicting travel times on freeways[J]. IEEE Transactions on Intelligent Transportation Systems, 2004, 5(3): 200-207.
  • 3HORVITZE J, APACIBLE J, SARIN R, et al. Prediction, expectation, and surprise: Methods, designs, and study of a deployed traffic forecasting service[C]//Proceedings of the Twenty-First Conference on Uncertainty in Artificial Intelligence. Edinburgh: [s.n.], 2005: 275-283.
  • 4STEPHANEDES Y J, MICHALOPOULOS P G, PLUM R A. Improved estimation of traffic flow for real-time control[C]//Proceedings of The 60th Annual Meeting of the Transportation Research Board. Washington: Transportation Research Board, 1981: 28-39.
  • 5DOUGHERTY M S, KIRBYHR, BOYLE R D. The use of neural networks to recognizeand predict trafficcongestion[J]. Trafic Engineering and Control, 1993, 34(6): 311-314.
  • 6CHINGWK, FUNG E S, NG MK. A multivariate Markov chain model for categorical data sequences and its applications in demand predictions[J]. IMA Journal of Management Mathematics, 2002,13(3): 187-199.
  • 7CHING W K, FUNG E S, NG MK. Higher-order Markovchain models for categorical data sequences[J]. Naval Research Logistics, 2004, 51(4): 557-574.
  • 8CHING W K, SIU T, LI L. An improved parsimonious multivariate Markov chain model for credit risk[J]. Journal of Credit Risk, 2009, 5(1): 1-25.
  • 9CHING W K. Iterative methods for queuing and manufacturing systems[M]. London: Springer, 2001.
  • 10CHING W K. A higher-order Markov model for the newsboy's problem[J]. Journal of Operational Research Society, 2003, 54: 291-298.

共引文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部