期刊文献+

基于非线性递减选择策略的人工蜂群算法 被引量:2

Artificial Bee Colony Algorithm Based on Nonlinear Decreasing Selection Strategy
下载PDF
导出
摘要 针对基本人工蜂群算法种群多样性难以保持,进化速度慢等问题,提出了一种基于非线性递减选择策略的人工蜂群算法。算法在雇佣蜂阶段采用非线性递减选择策略以提高种群的多样性,进而改善种群的全局勘探能力;在跟随蜂阶段由全局最优解引导搜寻新解,以提高种群的局部开发能力;侦察蜂采用贴近最优解的策略以提高生成新解的质量,加速种群进化。改进的三个阶段改善了算法的寻优性能,最后通过实验对比与分析,验证了该算法的有效性。 An artificial bee colony algorithm based on nonlinear decreasing selection strategy is proposed to solve the prob⁃lems of population diversity and slow evolution of basic artificial bee colony algorithm.The algorithm adopts the nonlinear decreasing selection strategy to improve the diversity of the population and improve the global exploration ability of the population.In the follow⁃ing stage,the global optimal solution is used to guide the search for new solutions to improve the local development ability of the population.The scout bee adopts the strategy close to the optimal solution to improve the quality of the new solution and accelerate the population evolution.In the three stages,the optimization performance of the algorithm is improved.Finally,the effectiveness of the algorithm is verified by experimental comparison and analysis.
作者 刘文英 陈振文 苏兆鑫 李克文 LIU Wenying;CHEN Zhenwen;SU Zhaoxin;LI Kewen(School of Computer Science and Technology,China University of Petroleum,Qingdao 266580)
出处 《计算机与数字工程》 2021年第12期2556-2561,2567,共7页 Computer & Digital Engineering
基金 国家科技重大专项“低渗透储层高精度随钻成像技术”(编号:2016ZX05021-002) 国家自然科学基金项目“多尺度概念格的构造与知识发现方法研究”(编号:61673396) 山东省自然科学基金项目“网络化软件动态可信性轻量化评估方法研究”(编号:ZR2017MF032) 中国石油大学(华东)自主创新科研计划青年基金项目(编号:18CX06044A)资助。
关键词 人工蜂群算法 算法优化 artificial bee colony algorithm algorithm optimizing
  • 相关文献

参考文献1

二级参考文献53

  • 1[11]Shi Y, Eberhart R. Fuzzy adaptive particle swarm optimization [ A ].Proc. Congress on Evolutionary Computation[ C ]. Seonl, Korea. Piscataway, NJ: IEEE Service Center,27 - 30 May 2001.1.101 - 106.
  • 2[12]Jacques Riget,Jakob S Vesterstrom. A diversity-guided particle swarm optimization-the ARPSO [ DB/OL ]. http://citeseer. nj. nec. com/riget02diversityguided. html.
  • 3[13]Lovbjerg M, Krink T. Extending particle swarms with self-organized criticality[ A ]. Proceedings of the Fourth Congress on evolutionary computation (CEC-2002) [ C ]. Honolulu, HI USA, 2002.2. 1588 -1593.
  • 4[14]Al-kazemi B, Mohan C K. Multi-phase generalization of the particle swarm optimization algorithm[A]. Proceedings of the 2002 Congress on Evolutionary Computation[ C ]. Honolulu, HI USA, 12 - 17 May 2002.1.489 - 494.
  • 5[15]Krink T, Vesterstrom J S, Riget J. Particle swarm optimisation with spatial particle extension[ A]. Proceedings of the Fourth Congress on Evolutionary Computation (CEC-2002) [ C ]. Honolulu, HI USA, 2002.2.1474- 1479.
  • 6[16]Kennedy J, Mendes R. Population structure and particle swarm performance[ A]. Proceedings of the IEEE Congress on Evolutionary Computation ( CEC 2002 ) [ C ]. Honolulu, HI USA, 12 - 17 May 2002.2.1671- 1676.
  • 7[17]M Lvbjerg, T K Rasmussen, T Krink. Hybrid particle swarm optimiser with breeding and subpopulations[ A ]. Proceedings of the Genetic and Evolutionary Computation Conference [ C ]. San Francisco, California,2001.469 - 476.
  • 8[18]Xiaohui Hu, Eberhart,R C.Adaptive particle swarm optimization:detection and response to dynamic systems[ A ]. Proceedings of the 2002 Congress on Evolutionary Computation[ C ]. Honolulu, HI USA, 2002.2.1666 - 1670.
  • 9[19]M Dorigo, L M Gambardella. Ant colony system: a cooperative learning approach to the traveling salesman problem[J]. IEEE Transactions on Evolutionary Computation, 1997,1(1 ) :53 - 66.
  • 10[20]T Stutzle, H H Hoos. MAX MIN Ant system[ J]. Journal of Future Generation Computer Systems,2000,16:889 - 914.

共引文献78

同被引文献9

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部