期刊文献+

基础情绪脑电分析方法的探索性研究

Exploratory Research on Basic Emotional Brain Wave Analysis Methods
下载PDF
导出
摘要 目的研究愉悦和悲伤情绪的脑电数据,经分析、处理与改进,为精神医学领域提供新手段。方法通过神经头盔采集6名受试者在愉悦和悲伤情绪的脑电数据,经预处理,去除眼电,工频和肌电等干扰,经过分段取出需要目标信号进行分析。结果愉悦情绪脑电的α波获得增强,成为主要频次;在悲伤情绪θ波获得增强,相应的α波和β波减弱。结论本研究对脑电数据的处理方法进行了改进,为今后对脑电数据的分析提供了新的思路。 Objective The distinction of basic emotions is of great value to research in psychiatry and other fields.This research aims to study the EEG data of pleasure and sadness,analyzing,processing and improving the EEG data for providing new means for the field of psychiatry.Methods EEG data of six male college students under self-emotional stimulation of pleasure and sadness was collected through the neural helmet.The raw data was then preprocessed to remove the interference of ocular electricity,power frequency and EMG.After segmentation,the target signal was extracted for further analysis.Results The alpha wave of the EEG for pleasure emotions was enhanced and became the main frequency.In the sad condition,the theta wave was strengthened,and the corresponding alpha and beta waves were weakened.Conclusion This study improves the processing method of EEG data and provides new ideas for the analysis of EEG data in the future.
作者 曹宇杰 高亚罕 郭国栋 CAO Yujie;GAO Yahan;GUO Guodong(School of Health Science and Engineering,University of Shanghai for Science&Technology,Shanghai,200093;Shanghai University of Medicine&Health Sciences,Shanghai,201318)
出处 《生物医学工程学进展》 CAS 2021年第4期196-199,共4页 Progress in Biomedical Engineering
基金 上海市教育委员会“教师专业发展工程”,上海高校教师培养计划项目沪府办外[2017]6644。
关键词 基础情绪 脑电信号 预处理 basic emotions EEG pretreatment
  • 相关文献

参考文献3

二级参考文献34

  • 1綦宏志,程龙龙,陈滨津,赵翔,明东,万柏坤.想象动作中动态脑电的信息熵研究[J].中国生物医学工程学报,2007,26(1):74-77. 被引量:6
  • 2Krizhevsky A, Sutskever I, Hinton G E. ImageNet classifica- tion with deep convolutional neural networks. In: Advances in Neural Information Processing Systems 25. Lake Tahoe, Nevada, USA: Curran Associates, Inc., 2012. 1097-1105.
  • 3Lopes A T, de Aguiar E, Oliveira-Santos T. A facial expres- sion recognition system using convolutional networks. In: Proceedings of the 28th SIBGRAPI Conference on Graph- ics, Patterns and Images. Salvador: IEEE, 2015. 273-280.
  • 4Lucey P, Cohn J F, Kanade T, Saragih J, Ambadar Z, Matthews I. The extended Cohn-Kanade dataset (CK+): a complete dataset for action unit and emotion-specified ex- pression. In: Proceedings of the 2010 IEEE Computer So- ciety Conference on Computer Vision and Pattern Recogni- tion Workshops (CVPRW). San Francisco, CA: IEEE, 2010. 94-101.
  • 5Bishop C M. Pattern Recognition and Machine Learning. New York: Springer, 2007.
  • 6Bengio Y. Learning deep architectures for AI. Foundations and Trends in Machine Learning. Hanover, MA, USA: Now Publishers Inc., 2009. 1-127.
  • 7LeCun Y, Boser B, Denker J S, Howard R E, Hubbard W, Jackel L D, Henderson D. Handwritten digit recogni- tion with a back-propagation network. In: Proceedings of Advances in Neural Information Processing Systems 2. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1990. 396-404.
  • 8Fukushima K. Neocognitron: a self-organizing neural net- work model for a mechanism of pattern recognition unaf- fected by shift in position. Biological Cybernetics, 1980, 36(4): 193-202.
  • 9Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors. Nature, 1986, 323(6088): 533-536.
  • 10LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 86(11): 2278-2324.

共引文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部