期刊文献+

一种融合上下文信息特征的改进MTCNN人脸检测算法 被引量:7

Improved MTCNN face detection algorithm fused with context features
下载PDF
导出
摘要 在课堂场景下,针对多任务卷积神经网络(multi-task convolutional neural network,MTCNN)人脸检测算法对小人脸检测率较低的问题,提出一种改进的MTCNN算法。首先,对MTCNN算法网络模型的R-Net层网络集成上下文信息卷积模块,扩大特征图感受野获取更多小人脸信息;其次,引入反卷积层与最大池化层,以解决特征融合数据维度不一致问题;最后,对MTCNN算法网络模型的O-Net层网络集成上下文信息卷积模块,进一步提取小人脸特征信息,并引入2个卷积池化层进行特征融合。实验结果表明:与MTCNN算法相比,所提方法在FDDB数据集上检测精度提升3%,在课堂场景数据集上人脸检测召回率与F_(1)分数分别提升8.69%和4.94%。 The multi-task convolutional neural network(MTCNN)face detection algorithm has a low detection rate of small faces in classroom scenes.An improved MTCNN algorithm that integrates context features was thus proposed.Firstly,the context convolution module was integrated with the R-Net layer network of the MTCNN model,and the feature map receptive field was expanded to obtain more small face information.Secondly,the deconvolution layer and the max-pooling layer were introduced to solve the problem of inconsistency of feature fusion data dimensions.Finally,the O-Net layer network of the MTCNN model integrated the context convolution module to further extract the small face feature information,and two convolutional pooling layers were introduced for feature fusion.The experimental results show the detection accuracy increased by 3%on the FDDB data set,the face detection recall rate and the F_(1) score increased by 8.69%and 4.94%respectively on the classroom scene data set compared with those of MTCNN algorithm.
作者 顾梅花 冯婧 杨娜 GU Meihua;FENG Jing;YANG Na(School of Electronics and Information,Xi’an Polytechnic University,Xi’an 710048,China)
出处 《西安工程大学学报》 CAS 2021年第6期114-120,共7页 Journal of Xi’an Polytechnic University
基金 国家自然科学基金青年科学基金项目(61901347) 2020年省级大学生创新创业训练计划项目(S202010709104)。
关键词 上下文信息 特征融合 多任务卷积神经网络 人脸检测 课堂场景 小人脸 context feature fusion multi-task convolutional neural network face detection classroom scenes small faces
  • 相关文献

参考文献8

二级参考文献42

共引文献69

同被引文献40

引证文献7

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部