期刊文献+

基于改进ELM的锂离子电池RUL预测 被引量:2

RUL prediction of Li-ion battery based on improved ELM
下载PDF
导出
摘要 针对传统的极限学习机(ELM)算法对锂离子电池剩余使用寿命(RUL)预测效果不佳,以及已有改进ELM算法中鲜有关注输入层与隐藏层的“局部”连接等问题,提出改进算法A,即把ELM输入层与隐藏层之间的全连接改为卷积、池化;由于改进算法A的预测结果存在不确定性,向改进算法B引入全局平均池化的思想,直接把ELM输入层与隐藏层之间的全连接改为池化。将马里兰大学高级生命周期工程研究中心(CALCE)和美国国家航空航天局(NASA)的两组数据用于仿真实验,发现两种改进算法的预测精度均比常见的几种改进ELM算法更好。以B7电池为例,当预测起始点T=100时,改进算法A和改进算法B的均方根误差分别可达到0.0232和0.0090。 In view of the poor effect of traditional extreme learning machine(ELM)algorithm in predicting the remaining useful life(RUL)of Li-ion battery and the existing improved ELM algorithms paid little attention to the“local”connection between the input layer and the hidden layer,the improved algorithm A was proposed.That was,the full connection between the input layer and the hidden layer of ELM was changed into convolution and pooling.Due to the uncertainty of the prediction results of the improved algorithm A,the idea of global average pooling was introduced in the improved algorithm B,which directly changed the full connection between the input layer and the hidden layer of ELM into pooling.Two sets of data from the Center for Advanced Life Cycle Engineering(CALCE)of the University of Maryland and National Aeronautics and Space Administration(NASA)were used in the simulation experiments.It was found that both of the two improved algorithms had better prediction accuracy than several common improved ELM algorithms.Taking B7 battery as an example,when the starting point of prediction T was 100,the root mean square error of the improved algorithm A and the improved algorithm B could reach to 0.0232 and 0.0090,respectively.
作者 唐婷 袁慧梅 TANG Ting;YUAN Hui-mei(Information Engineering College,Capital Normal University,Beijing 100048,China)
出处 《电池》 CAS 北大核心 2021年第6期548-552,共5页 Battery Bimonthly
基金 国家自然科学基金(61873175)。
关键词 锂离子电池 剩余使用寿命(RUL) 极限学习机(ELM) 局部 卷积 池化 Li-ion battery remaining useful life(RUL) extreme learning machine(ELM) local convolution pooling
  • 相关文献

参考文献2

二级参考文献24

  • 1王海燕,杨方廷,刘鲁.标准化系数与偏相关系数的比较与应用[J].数量经济技术经济研究,2006,23(9):150-155. 被引量:99
  • 2郭建青,李彦,王洪胜,周宏飞.粒子群优化算法在确定河流水质参数中的应用[J].水利水电科技进展,2007,27(6):1-5. 被引量:17
  • 3HEI W, WILLIARD N, OSTERMAN M, et al. Prognos- tics of lithium-ion batteries based on Dempster-Shaier theory and the Bayesian Monte Carlo method [ J]. J Power Sources, 2011, 196(23):10314-10321.
  • 4LEE S, KIM J, LEE J, et al. State-of-charge and ca- pacity estimation of lithium-ion battm7 using a new open-circuit voltage versus state-of-charge E j]. Journal of Power Sources, 2008, 185(2) : 1376-1373.
  • 5XING Y J, EDEN W M, KWOK-LEUNG M T, et al. An ensemble model for predicting the remaining useful performance of lithium-ion batteries [ J]. Microelectron- ics Reliability, 2013, 53(6): 811-820.
  • 6WIDODO A, SHIM M, CAESARENDRA W, et al. In- telligent prognostics and health management [ Z ]. Den- ver: CO, 2008: 6-9.
  • 7SAHA B, GOEBEL K, POLL S. An integrated ap- proach to battery health monitoring using Bayesian re- gression and state estimation I J]. 2007 IEEE Autotest- con, 2007 (1-2) : 646-653.
  • 8LAN Y, SOH Y C, HUANG G B. Ensemble of online sequential extreme learning machine [ J ]. Neurocom- puting, 2009(72): 3391-3395.
  • 9ZHAO J, WANG Z, PARK D S. Online sequential ex- treme learning machine with forgetting mechanism [ J ]. Neurocomputing, 2012, 87 (11) : 79-89.
  • 10黄海宏,杨仁增,王海欣.基于灰色模型的多电平逆变器的预测控制[J].电子测量与仪器学报,2010,24(12):1126-1131. 被引量:6

共引文献50

同被引文献31

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部