摘要
深度学习影像组学(deep learning radiomics,DLR)是医学影像结合人工智能分析领域的一项新技术,可以解决传统影像组学技术自动化、标准化程度低,特征提取步骤繁琐,耗时耗力的问题,并进一步提升影像组学模型在肿瘤分类诊断与预后预测中的准确性和可靠性。本文首先介绍DLR方法的原理及其工作流程,进而介绍其在肿瘤诊断、分期分型预测、生存预后评估中的研究现状,最后对其进行总结与展望。
Deep learning radiomics(DLR)is a novel technique in the field of medical imaging combined with artificial intelligence analysis.It can solve several disadvantages of traditional radiomics,including low degree of automation and standardization,tedious feature extraction steps,and time-consuming and labor-consuming.DLR further improves the accuracy and reliability of radiomic models in tumor diagnosis and prognosis prediction.This paper firstly introduced the principle and workflow of the DLR method;then introduced its applications in tumor diagnosis,staging and typing prediction,and survival prognosis evaluation;and finally made the summary and prospect on DLR.
作者
金诗晨
孙晓鸣
蒋皆恢
左传涛
JIN Shichen;SUN Xiaoming;JIANG Jiehui;ZUO Chuantao(Major of Biomedical Engineering,School of Communication and Information Engineering,Shanghai University,Shanghai 200444,China;Department of PET Center,Huashan Hospital,Fudan University,Shanghai 200235,China)
出处
《肿瘤影像学》
2021年第6期439-444,共6页
Oncoradiology
基金
国家自然科学基金(81971641,81671239)
上海市卫生健康委员会老龄化和妇儿健康研究专项(2020TJZX0111)
上海申康医院发展中心临床三年行动计划项目(SHDC2020CR1038B)。