期刊文献+

基于深度学习的二值测量矩阵自适应构建方法 被引量:2

Adaptive Construction Method for Binary Measurement Matrix Based on Deep Learning
原文传递
导出
摘要 在基于压缩感知的计算鬼成像领域中,测量矩阵的设计问题一直是被研究的对象。理想的测量矩阵需要满足较高的采样效率、较好的重构效果和较低的硬件实现要求。为了减轻测量矩阵的设计与实现难度,提出了一种基于深度学习的二值测量矩阵的构建方法。该方法通过卷积操作模拟图像的压缩采样过程,并利用设计的采样网络对图像数据进行训练,以自适应的方式对测量矩阵进行迭代更新。仿真与实验结果表明,构建的测量矩阵能够在较低采样率条件下得到高质量的重构图像,进一步促进了计算鬼成像的实际应用。 In the field of computational ghost imaging based on compressed sensing,the design of the measurement matrix has always been a subject of research.The ideal measurement matrix must possess high sampling efficiency,good reconstruction effect,and low hardware-implementation difficulty.To reduce the difficulty of designing and implementing the measurement matrix,this paper proposes a method for constructing a binary measurement matrix based on deep learning.This method uses convolution to simulate the compressed sampling process of the image and trains the image data through the designed sampling network to adaptively and iteratively update the measurement matrix.The results of the simulation and experiments show that the constructed measurement matrix can obtain high-quality reconstructed images under low sampling rate,which further facilitate the practical application of computational ghost imaging.
作者 韩捷飞 连博博 孙立颖 Han Jiefei;Lian Bobo;Sun Liying(Suzhou Jiaoshi Intelligent Technology Co.,Ltd.,Suzhou,Jianngsu 215123,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2021年第22期433-441,共9页 Laser & Optoelectronics Progress
基金 江苏省自然科学基金(BK20180233,BK20201188)。
关键词 光计算 成像系统 计算鬼成像 压缩感知 测量矩阵 图像处理 深度学习 optics in computing imaging systems computational ghost imaging compressed sensing measurement matrix image processing deep learning
  • 相关文献

参考文献9

二级参考文献71

  • 1颜学龙,余君.二维离散小波变换的FPGA实现[J].电视技术,2007,31(4):19-21. 被引量:4
  • 2Donoho D L, Tsaig Y. Extensions of compressed sensing [J]. Signal processing. 2006, 86(3) : 533 -548.
  • 3Cand E, Romberg J. Sparsity and incoherence in compressive sampling[ J ]. Inverse problems, 2007, 23 (3) : 969 -985.
  • 4Candes E, Tao T. Near optimal signal recovery from random projections: universal encoding strategies [ J ]. IEEE trans info theory, 2006, 52 (12): 5406-5425.
  • 5Raginsky M, Willett R M. Compressed sensing performance bounds under poisson noise[ J]. IEEE transactions on signal processing, 2010, 58(8) : 3990 -4002.
  • 6Donoho D L. Compressed sensing[J]. IEEE trans information theory,2006, 52(4): 1289- 1306.
  • 7邵文泽,韦志辉,肖亮,等.压缩感知基本理论:回顾与展望[EB/OL].(2010-12-25)[2011-3-24].http://www.paper.edu.cn.
  • 8Blanchard J D, Cartis C, Tanner J. Decay properties of restricted isometry constants[ J]. IEEE signal processing letters, 2009, 16(7) : 572 -575.
  • 9刘吉英.压缩感知理论及在成像中的应用[D].国防科学技术大学.2010
  • 10A Mehmet,P Jinsoo,T Vahid.A Coding Theory Approach to Noisy Compressive Sensing Using Low Density Frames[].IEEE Trans on Signale Processing.2011

共引文献105

同被引文献22

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部