期刊文献+

基于Sentinel-1和MODIS数据反演农田地表土壤水分—以REMEDHUS地区为例 被引量:1

Retrieval of Soil Moisture in Agricultural Area based on Sentinel-1 and MODIS Data-Take REMEDHUS as an Example
原文传递
导出
摘要 土壤水分是陆地生态系统和水循环的重要状态变量,在植被生长监测、农作物产量评估等研究中均发挥着重要作用。为了消除植被散射的影响,进而实现农田地表土壤水分的高精度反演,以时间序列Sentinel-1影像及MODIS产品为实验数据,基于高级积分方程模型和比值植被模型的耦合模型,通过采用不同光学植被参数和VH交叉极化后向散射系数,分别对农田植被散射贡献进行表征,消除植被散射的影响,进而实现土壤水分的高精度反演。结果表明:当利用VH极化进行参数化植被散射贡献时,标定的耦合模型,虽然可消除对光学植被参数的依赖并较好地模拟Sentinel-1卫星观测,但土壤水分反演结果效果欠理想,相关系数R最大仅为0.54;与VH极化相比,利用光学植被参数表征植被散射贡献时,土壤水分整体反演效果较理想,R最大达到0.79,但光学植被参数反演结果在不同站点存在显著的空间差异性,R介于0.07~0.79之间。因此,在未来研究中可尝试将雷达数据与光学数据协同反演,以期在消除植被散射影响的基础上,实现植被覆盖区域土壤水分的高精度反演及动态变化监测。 Soil moisture is considered as an important state variable of terrestrial ecosystems and water cycle,which plays an important role in many researches,such as vegetation growth monitoring and crop yield evalua⁃tion.In order to eliminate the effect of vegetation scattering and achieve high-precision retrieval of farmland soil moisture,time series of Sentinel-1 data and MODIS products were used as experimental data to retrieve soil moisture.The advanced integral equation model was coupled with ratio vegetation model,which is parameter⁃ized by four different optical vegetation parameters and VH cross-polarization backscattering coefficient for veg⁃etation scattering contribution,to eliminate the impact of vegetation scattering and then achieve high-precision inversion of soil moisture.The results show that the coupled model can simulate the Sentinel-1 VV-polarized backscattering coefficient but the soil moisture retrieval results are not ideal with the maximum correlation coeffi⁃cient(R)is 0.54 when VH is used for parameterizing the scattering contribution of vegetation.Different from VH,the overall soil moisture retrieval results is relatively better with a maximum R of 0.79 when four optical vegetation parameters are used.However,there is significant spatial difference at different stations with the re⁃sults of optical vegetation parameters,with R ranging from 0.07 to 0.79.Therefore,in future results,it is bet⁃ter to combine radar data and optical data for eliminating the scattering contribution of vegetation and realizing the high-precision retrieval of soil moisture and observation of dynamic changes in vegetated areas.
作者 杨欣源 白晓静 Yang Xinyuan;Bai Xiaojing(School of Hydrology and Water Resources,Nanjing University of Information Science and Technology,Nanjing 210044,China)
出处 《遥感技术与应用》 CSCD 北大核心 2021年第5期973-982,共10页 Remote Sensing Technology and Application
基金 国家自然科学基金青年基金项目(41801248) 南京信息工程大学人才启动基金(2017r087)。
关键词 土壤水分 Sentinel⁃1数据 植被散射 植被参数 VH极化 Soil moisture Sentinel-1 data Vegetation scattering Vegetation parameter VH Polarization
  • 相关文献

参考文献4

二级参考文献43

  • 1NI WenJian1,2, GUO ZhiFeng1 & SUN GuoQing3 1 State Key Laboratory of Remote Sensing Science, jointly sponsored by the Institute of Remote Sensing Applications of Chinese Academy of Sciences and Beijing Normal University, Beijing 100101, China,2 Graduate University of Chinese Academy of Sciences, Beijing 100049, China,3 Department of Geography, University of Maryland, College Park, MD 27042, USA.Improvement of a 3D radar backscattering model using matrix-doubling method[J].Science China Earth Sciences,2010,53(7):1029-1035. 被引量:4
  • 2曹梅盛,李培基,D.A.Robinson,T.E.Spies,G.Kukla.中国西部积雪SMMR微波遥感的评价与初步应用[J].环境遥感,1993,8(4):260-269. 被引量:46
  • 3曹梅盛,李培基.中国西部积雪微波遥感监测[J].山地研究,1994,12(4):230-234. 被引量:46
  • 4孙之文,施建成,蒋玲梅,杨虎,张立新.被动微波遥感反演中国西部地区雪深、雪水当量算法初步研究(英文)[J].地球科学进展,2006,21(12):1363-1369. 被引量:26
  • 5毛克彪,施建成,李召良,覃志豪,李满春,徐斌.一个针对被动微波AMSR-E数据反演地表温度的物理统计算法[J].中国科学(D辑),2006,36(12):1170-1176. 被引量:37
  • 6David R Legates, Rezaul Mahmood, Delphis F Levia, et al. Soil moisture: A central and unifying theme in physical geography[J]. Progress in Physical Geography, 201 O, 35(1 ): 65-- 86.
  • 7Ulaby F T, Moore R K, Fung A K. Microwave Remote Sensing: Active and Passive, Vol. II: Microwave Remote Sensing Fundamentals and Radiometry[M]. Dedham, Massachusetts: Artech House, 1986:861--920.
  • 8Gherboudj I, Magagi R, Berg A A, et al. Soil moisture retrieval over agricultural fields from multi-polarized and multi-angular RADARSAT-2 SAR data[J]. Remote Sensing of Environment, 2011, 115(1): 33--43.
  • 9Bindlish R, Barros A P. Multifrequency soil moisture inversion from sar measurements with the use of IEM[J]. Remote Sensing of Environment, 2000, 71(1): 67--88.
  • 10Bindlish R, Jackson T, Sun R, et al. Combined passive and active microwave observations of soil moisture during CLASIC[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(4): 644--648.

共引文献113

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部