期刊文献+

Efficient photocatalytic reduction of chromium(Ⅵ) using photoreduced graphene oxide as photocatalyst under visible light irradiation 被引量:2

原文传递
导出
摘要 Graphene oxide(GO),a new and promising material,has been widely used as a co-catalyst in photocatalytic reactions;however,its capacity as a sole photocatalyst has rarely been investigated.In this study,ultraviolet(UV) light irradiation was used as a modification method to obtain reduced GO(rGO) samples.The samples were used as photocatalysts to examine their visible light photocatalytic activity toward hexavalent chromium(Cr(Ⅵ)) removal.Atomic force microscopy(AFM),X-ray diffraction(XRD),UV-vis spectrophotometry,Raman spectroscopy,X-ray photoelectron spectroscopy(XPS),and electron spin resonance(ESR) spectroscopy were applied to interpret the surface and structure changes with UV irradiation.The oxygen-containing functional groups(OFGs) on the GO surface were reduced to defective carbons andπ-conjugated C=C(sp^(2) domains) under UV light;this led to a decrease in the interlayer distance between GO sheets,GO fragmentation,and increased disorder on the GO surface.The restoration of sp^(2) domains led to a narrower band gap of GO,which favored the rGO excitation by visible light to generate electron-hole pairs.The rGO pre-irradiated with UV for 1 h(rGO-1),possessing the highest defect density and electron generation efficiency,exhibited the best Cr(Ⅵ) reduction efficiency,which was about three times that of the GO sample;moreover,it outperformed most of the reported GO-based nanomaterials.In addition,low pH and the addition of citric acid as a hole scavenger could further improve the photocatalytic activity.This study proves that GO or rGO can be used as a sole photocatalyst under visible light to remove environmental pollutants such as heavy-metal ions,and it paves the way for the development of this kind of material and its UV-irradiation modification for further applications.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第32期17-27,共11页 材料科学技术(英文版)
基金 financial support provided by National Natural Science Foundation of China (Nos.21876003 and41961134034) the Second Tibetan Plateau Scientific Expedition and Research (No.2019QZKK0607) the 111 Project Urban Air Pollution and Health Effects (B20009)。
  • 相关文献

同被引文献24

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部