期刊文献+

Dynamic response and damage evolution of Zr-based bulk metallic glass under shock loading

原文传递
导出
摘要 Dynamic response and damage evolution of Zr_(70)Cu_(13)Ni_(9.8)Al_(3.6)Nb_(3.4)Y_(0.2) bulk metallic glass(Zr-based BMG)under impact pressure ranging from 4.03 GPa to 27.22 GPa were studied.The Hugoniot Elastic Limit(HEL)and the spalling Strength(σ_(sp))were measured as 7.09 GPa and 2.28 GPa,and the curve of impact velocity(D)and particle velocity(u)were also obtained.Under the strain rate of~10^(5)s^(-1),local crystallization phenomenon was observed.As increasing the impact pressure,the failure mode of Zr-based BMG changed from spallation to fragmentation caused by the combination of spalling cracks and longitudinal cracks.Cone-cup structures were also observed in the internal spalling zone via nano-CT characterization.When increasing the impact pressure,the thickness of Zr-based BMG increased after impact and the remelting and cladding layers were also observed on the fracture surfaces.The fragments of the specimen were welded after impact due to the high temperature remelting,which causes plastic deformation of Zr-based BMG under shock loading.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第34期119-127,共9页 材料科学技术(英文版)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部