期刊文献+

高维稳健典型相关分析研究与应用 被引量:3

Research and Application of High-Dimensional Robust Canonical Correlation Analysis
原文传递
导出
摘要 随着各行业的快速发展和对数据应用的重视,产生的数据越来越多,结构也越来越复杂,含异常值的数据和高维数据越来越多地出现在我们的视野中.传统的典型相关分析对异常值非常敏感,基于MCD估计方法的典型相关分析对异常值有一定的抵御作用,但随着数据维数的增加MCD估计的偏差不断变大,稳健性也随之降低,且在数据维数大于样本量的时候MCD估计方法失效,因此提出了基于MRCD估计方法的高维稳健典型相关分析.数值模拟和实证分析的结果表明,基于MRCD估计方法的典型相关分析能很好地抵御异常值,而且在数据维数大于样本量的情况下,基于MRCD估计方法的典型相关分析更为有效. With the rapid development of various industries and the emphasis on data applications,more and more data are generated,and the structure of data is becoming more and more complex.More and more data containing outliers and highdimensional data appear in our field of vision.The traditional canonical correlation analysis is very sensitive to outliers,and the canonical correlation analysis based on the MCD estimation method has a certain resistance to outliers,but as the data dimension increases,the deviation of the MCD estimation continues to increase,and the robustness also decreases.And the MCD estimation method fails when the data dimension is greater than the sample size,so this paper proposes a high-dimensional robust canonical correlation analysis based on the MRCD estimation method.The results of numerical simulation and empirical analysis show that the canonical correlation analysis based on the MRCD estimation method can resist outliers well,and when the data dimension is greater than the sample size,the canonical correlation analysis based on the MRCD estimation method is more effective.
作者 姜云卢 邓罡 文诗涵 刘峻成 JIANG Yunlu;DENG Gang;WEN Shihan;LIU Juncheng(School of Economics,Jinan University,Guangzhou 510632)
出处 《系统科学与数学》 CSCD 北大核心 2021年第10期2965-2976,共12页 Journal of Systems Science and Mathematical Sciences
基金 广东省自然科学基金项目(2018A030313171,2019A1515011830)资助课题。
关键词 异常值 高维数据 MCD估计 典型相关分析 Outliers high-dimensional data MCD estimation MRCD estimation canonical correlation analysis
  • 相关文献

参考文献2

二级参考文献15

  • 1王斌会,陈一非.基于MCD的稳健主成分算法及其实证分析[J].数理统计与管理,2006,25(4):462-468. 被引量:19
  • 2Hotelling,H.Relations Between Two Sets of Variates[J].Biometrika,1936,(28):321-377.
  • 3Robinson,P.M.,Generalized Canonical Analysis for Time Series[J].J.Multivar.Anal.,1973,(3):141-160.
  • 4Lzenman,A.J.,Reduced-rand Regression for the Multivariate Linear Model[J].J.Multivar.Anal.,1975,(5):248-264.
  • 5David,R.,Brillinger.Time Series:data Analysis and Theory[M].New York:Rinehart Winston,1975.
  • 6Anderson,T.W.,Asymptotic Theory for Canonical Correlation Analysis[J].J.Multivar.Anal.,1999,(70):1-29.
  • 7Taskinen,S.,Croux,C.,Kankainen,A.,Ollila,E.,Oja,H..Canonical Analysis Based on Scatter Matrices[J].J.Multivar.Anal.,2006,(97):359-384.
  • 8Karnel,G..Robust Canonical Correlation and Correspondance Analysis.The Frontiers of Statistical Scientific and Industrial applications,Volume Ⅱ of the Proceedings of ICOSCO I[Z],The first international conference on statistical computing,335-354.
  • 9Croux,C.,Dehon,C..Analyse Canonique Basee sur des Estimateurs Robustes de la matrice de Covariance[J].La Revue de Statistique Appliquee,2002,(2):5-26.
  • 10Rousseeuw,P.J.,Least Median of Squares Regression[J].Journal of the American Statistical Association,1984,(79):871-880.

共引文献9

同被引文献29

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部