期刊文献+

多项式系统焦点的轨线判定方法

A Determination Method for the Focus Point of Polynomial System
原文传递
导出
摘要 文章给出判定多项式系统焦点的一种方法.考察了解析系统周期环和凸曲线的相关性质,结合多项式系统在奇点附近的解曲线的相对曲率以及判定参数曲线全局凸的结果,给出了判定奇点类型的方法. In this paper,a method for determining the focus point of the polynomial system is given.The properties of periodic ring of analytic system and convex curve are investigated.Based on the relative curvature of the solution curve of the polynomial system near the the singular point and the result of identifying the global convexity of the parametric curve,a new method to determine the type of singularities is proposed.
作者 郅俊海 陈玉福 ZHI Junhai;CHEN Yufu(Beijing Wuzi University,Beijing 101149;University of Chinese Academy of Sciences,Beijing 100040)
出处 《系统科学与数学》 CSCD 北大核心 2021年第10期2977-2986,共10页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金项目(11271363) 北京市教委科技计划一般项目(KM202010037003)资助课题。
关键词 解析系统 周期环 相对曲率 奇点 Analytic system periodic ring the relative curvature the singular point
  • 相关文献

参考文献4

二级参考文献34

  • 1杜乃林,陈士华.中心焦点判定的形式积分因子方法[J].数学杂志,1997,17(2):231-239. 被引量:7
  • 2Cherkas L A, Romanovski V G. The center conditions for a Lienard system. Comp. Math. Appl., 2006, 52 : 363-374.
  • 3Lu Z, He B, Luo Y, Pan L. An algorithm of real root isolation for polynomial systems with applications to the construction of limit cycles. Symb. Numb. Comp., 2007, 23(1): 131-147.
  • 4王东明.消去法及其应用.北京:科学出版社,2000.
  • 5Gao X, Wang D K, Qiu z, Yang H. Equation Solving and Machien Proving-Problem Solving with MMP. Science Press, Beijing, 2006.
  • 6Cheng J, Gao X, Yap C. Complete numerical isolation of real roots in zero-dimensional triangular systems. J. Symb. Comp, 2009, 44: 768-785.
  • 7Luo Y, Lu Z. Stability analysis for Lotka-Volterra systems based on an algorithm of real root isolation. J. Comput. Appl. Math., 2007, 201: 367-373.
  • 8Feng R, Gao X. A polynomial time algorithm to find rational general solutions of first order autonomous ODEs. J. Symb. Comp., 2006, 41: 739-762.
  • 9Wang D, Xia B. Algebraic analysis of stability for some biological systems. Algebraic Biology- Computer Algebra in Biology, 2005, 20: 75-83.
  • 10Christopher C, Lynch S. Small-amplitude limit cycle bifurcations for Li6nard systems with quadratic or cubic damping or restoring forces. Nonlinearity, 1999, 12: 1099-1112.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部