期刊文献+

基于卡尔曼滤波器和多层感知器的大麦幼苗最优生长参数预测 被引量:1

Prediction of optimal growth parameters of barley seedling based on Kalman filter and multilayer perceptron
下载PDF
导出
摘要 为了提高生长舱大麦幼苗的质量和种植效率,首先利用卡尔曼滤波算法对传感器采集的数据进行处理,有效降低了环境因素和传感器本身误差的影响,提高了采集数据的精度,保证生长舱的精确控制和准确的实验数据,然后利用多元非线性回归、径向基函数和多层感知器神经网络对不同条件下,大麦种子萌发生长约160 h后的平均生长高度、麦苗重量和种子重量干燥比进行分析比较,结果表明,多层感知器网络模型对数据的拟合效果最好。利用该模型预测最优环境时的大麦幼苗平均高度和麦苗种子重量比与实际种植效果基本一致,为生长舱大麦幼苗的种植提供一定参考。 In order to improve the quality and planting efficiency of barley seedlings in the growth chamber,the Kalman filter algorithm was firstly used to process the data collected by the sensor,which effectively reduced the influence of environmental factors and the error of the sensor itself,improved the accuracy of the collected data,and ensured the precise control in the growth chamber and accurate test data.Then multiple nonlinear regression,radial basis function and multilayer perceptron neural network were used to analyze the average growth height,seedling weight and seed weight of barley seeds about 160 hours after germination under different conditions.The drying ratio was analyzed and compared.The results show that the multi-layer perceptron network model fits the data best.Using this model to predict the average height of barley seedlings and the ratio of seedling weight of barley seedlings in the optimal environment is basically consistent with the actual planting effect,which provides a certain reference for the planting of barley seedlings in the growth chamber.
作者 黄云龙 李正权 孙煜嘉 HUANG Yunlong;LI Zhengquan;SUN Yujia(School of Internet of Things Engineering,Jiangnan University,Wuxi 214122,China)
出处 《物联网学报》 2021年第4期90-98,共9页 Chinese Journal on Internet of Things
基金 国家自然科学基金资助项目(No.61571108) 无锡市科技发展资金项目(No.H20191001,No.G20192010)。
关键词 麦苗萌发 卡尔曼滤波 径向基函数 多层感知器 传感器 barley seedling germination Kalman filter radial basis function multilayer perceptron sensor
  • 相关文献

参考文献9

二级参考文献49

  • 1岳晓奎,袁建平.一种基于极大似然准则的自适应卡尔曼滤波算法[J].西北工业大学学报,2005,23(4):469-474. 被引量:26
  • 2丁明理,王祁,殷栩.基于自适应卡尔曼滤波的NGMIMU/GPS组合导航设计[J].哈尔滨工业大学学报,2006,38(1):67-70. 被引量:6
  • 3John L C, Markley F L. Predictive Filtering for Nonlinear Systems[J]. Journal of Guidance Control and Dynamics, 1997,20(3) : 566-571.
  • 4Li J, Zhang H Y. Stochastic Stability Analysis of Predictive Filters [J]. Journal of Guidance Control and Dynamics, 2006,29 (3) : 738-741.
  • 5Kalman R E. A new approach to linear filtering and prediction problems [J]. Transactions of the ASME Journal of Basic Engineering, 1960, 82(series D):35- 45.
  • 6Hugh F, Durrant-Whyte. Consistent integration and propagation of disparate sensor observations [J]. The International Journal of Robotics Research, 1987, 6 (3) :3-24.
  • 7Hugh F, Durrant-Whyte. Sensor models and multisensot integration [J]. The International Journal of Robotics Research, 1988,7 (6):97-113.
  • 8Bogler P L. Shafer-dempster reasoning with application to multisensor target identification systems [J]. IEEE Trans. on Systems, Man and Cybernetics, 1987,17(6) : 968-977.
  • 9Hong L, Lynch A. Recursive temporal-spatial information fusion with application to target identification [J]. IEEE Trans. on Aerospace and Electronic Systems ,1993,29(2) :435-445.
  • 10Rusinkiewics S, Levoy M. Efficient variants of the ICP algorithm [C]//Proceedings of 3D Digital Imaging and Modeling, 2001: 145-152.

共引文献423

同被引文献20

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部