期刊文献+

核电站失水事故的智能预警及仿真方法研究 被引量:1

Research on Intelligent Early Warning and Simulation Methods for Loss of Water Accidents in Nuclear Power Plants
下载PDF
导出
摘要 使用基于深度学习的卷积神经网络(Convolutional Neural Network,CNN)和卷积长短期记忆(Convolutional Long-Short Term Memory,ConvLSTM)模型进行核电站失水事故(Loss of Coolant Accident,LOCA)的预警及仿真综合模型的构建。利用CNN的特征提取能力有效识别不同破口尺寸的相关特征,并对工况发展进行预测分类,判定事故发生可能性并给出事故预警。利用预警阶段生成的事故种类判定,使用ConvLSTM在给定时长中计算LOCA工况中的关键系统参数变化情况,实现基于深度学习的LOCA工况仿真。多种方式的实验验证了该模型较好的功能性和适应性,事故类型判定正确率达到88%,仿真工况与原始值的误差保持在10-5量级。利用深度学习模型在特征提取和数值拟合方面的能力,将来还可以对核电站的工况仿真与故障分析进行进一步的智能化改进。 This article uses deep learning-based Convolutional Neural Network(Convolutional Neural Network,CNN)and Convolutional Long-Short Term Memory(Convolutional Long-Short Term Memory,ConvLSTM)models for nuclear power plant loss of water accident(Loss of Coolant Accident,LOCA)Construction of a comprehensive model of early warning and simulation.Use the feature extraction capability of CNN to effectively identify the relevant features of different breach sizes,predict and classify the development of working conditions,determine the possibility of accidents and give accident warnings.Using the type of accident generated in the early warning stage,ConvLSTM is used to calculate the change of key system parameters in the LOCA working condition for a given period of time to realize the LOCA working condition simulation based on deep learning.Various experiments have verified the good functionality and adaptability of the model.The accuracy of the accident type determination is 88%,and the error between the simulated operating conditions and the original value is maintained at the order of 10-5.Utilizing the capabilities of deep learning models in feature extraction and numerical fitting,further intelligent improvements can be made to the simulation and fault analysis of nuclear power plants in the future.
作者 佘兢克 施天姿 唐钰淇 张一凡 She Jingke;Shi Tianzi;Tang Yuqi;Zhang Yifan(College of Computer Science and Electronic Engineering,Hunan University,Changsha,410082,China;School of Electrical and Information Engineering,Changsha University of Science and Technology,Changsha,410015,China;College of Information and Intelligence,Hunan Agricultural University,Changsha,410128,China)
出处 《仪器仪表用户》 2021年第12期35-40,共6页 Instrumentation
基金 湖南省“湖湘高层次人才聚集工程-创新人才计划”(2018RS3050) 2019年工业互联网创新计划-基于工业互联网平台的生产线数字孪生系统项目(TC19084DY) 国家电力投资集团有限公司 中广核研究院有限公司 湖南湘江人工智能学院
关键词 失水事故 深度学习 事故预警 卷积神经网络 卷积长短期记忆模型 water loss accident deep learning accident warning convolutional neural network convolutional long and short-term memory model
  • 相关文献

参考文献4

二级参考文献27

  • 1刘永阔,夏虹,谢春丽,陈志辉,陈宏霞.基于RS-FNN的核电厂设备智能故障诊断方法的研究[J].核动力工程,2007,28(1):110-114. 被引量:3
  • 2林诚格,史国宝,陈耀东,等.“实际消除核电厂大量放射性物质释放”的技术见解报告[R].北京:国家核电技术公司,2013.
  • 3OECD/NEA. The Structure and Application of High Level Safety Goals[R]. Issy-les-Moulineaux, France, 2011.
  • 4IAEA. Safety of Nuclear Power Plants: Design [R]. Vienna, 2012.
  • 5WENRA. Safety of New NPP Design[R]. 2013.
  • 6NRC. Recommendations for Enhancing Reactor Safety in the 21th Century[R],Washington, DC, US, 2011.
  • 7国家核安全局,福岛事故后核电厂改进行动通用技术要求[R].北京,2012.
  • 8NRC,Safety Evaluation Report for the AP1000 Design [R]. Washington, DC, US, 2002.
  • 9NRC. Policy, Technical,and Licensing Issues Pertaining to Evolutionary and Advanced LWR Designs [R]. Washington, DC, US, 1993.
  • 10NRC. Guidance for the Assessment of Beyond-Design- Basis Aircraft Impacts [ R ] .Washington, DC, US, 2009.

共引文献13

同被引文献16

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部