期刊文献+

Feature Selection Optimization for Mahalanobis-Taguchi System Using Chaos Quantum-Behavior Particle Swarm

原文传递
导出
摘要 The computational speed in the feature selection of Mahalanobis-Taguchi system(MTS)using standard binary particle swarm optimization(BPSO)is slow and it is easy to fall into the locally optimal solution.This paper proposes an MTS variable optimization method based on chaos quantum-behavior particle swarm.In order to avoid the influence of complex collinearity on the distance measurement results,the Gram-Schmidt orthogonalization method is first used to calculate the Mahalanobis distance(MD)value.Then,the optimal threshold point of the system classification is determined through the receiver operating characteristic(ROC)curve;the misclassification rate and the selected variables are defined;the multi-objective mixed programming model is built.The chaos quantum-behavior particle swarm optimization(CQPSO)algorithm is proposed to solve the optimization combination,and the algorithm performs binary coding on the particle based on probability.Using the optimized combination of variables,a new Mahalanobis-Taguchi metric based prediction system is established to complete the task of precise discrimination.Finally,a fault diagnosis for the steel plate is taken as an example.The experimental results show that the proposed method can effectively enhance the iterative speed and optimization precision of the particles,and the prediction accuracy of the optimized MTS is significantly improved.
作者 LIU Jiufu ZHENG Rui ZHOU Zaihong ZHANG Xinzhe YANG Zhong WANG Zhisheng 刘久富;郑锐;周再红;张信哲;杨忠;王志胜(College of Automation,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China;School of Information Engineering,Guangdong Medical University,Dongguan 523808,Guangdong,China)
出处 《Journal of Shanghai Jiaotong university(Science)》 EI 2021年第6期840-846,共7页 上海交通大学学报(英文版)
基金 the National Natural Science Foundation of China(No.61473144)。
  • 相关文献

参考文献2

二级参考文献16

  • 1Kennedy J, Eberhart R C. Particle swarm optimization[C]. Proe of IEEE Int Conf on Neural Network. Piseataway: IEEE, 1995: 1942-1948.
  • 2Kennedy J, Eberhart R C. A discrete version of the partiele swarm algorithm[C]. Proc of the 1997 Conf on System, Man and Cybernetics. Piscataway.. IEEE, 1997:4104-4109.
  • 3Khanesar M A, Teshnehlab M, Shoorehdeli M A. A novel binary particle swarm optimization [C]. 15th Mediterranean Conf on Control and Automation. Piscataway: IEEE, 2007:1- 6.
  • 4Sun J. Feng B, Xu W B. Particle swarm optimization with particles having quantum behavior[C]. IEEE Proc of Congress on Evolutionary Computation. Piscataway: IEEE, 2004: 325-331.
  • 5Fang W, Sun J, Xu W B. Design IIR digital filters using quantum-behaved particle swarm optimization[C]. Int Conf on Natural Computation. Zurich: Springer-Verlag, 2006:637- 640.
  • 6Sun J, Liu J, Xu W B. Using quantum-behaved particle swarm optimization algorithm to solve non-linear programming problems [ J ]. Int J of Computer Mathematics, 2007, 84(2): 261-272.
  • 7Chen W, Sun J, Ding Y R. Clustering of gene expression data with quantum-behaved particle swarm optimization[C]. IEA/AIE, Zurich: Springer-Verlag, 2008: 388-396.
  • 8Sun J, Choi H L, Xu W B. A novel and more efficient search strategy of quantum-behaved particle swarm optimization[C]. ICANNGA, Zurich.. Springer-Verlag, 2007 :394-403.
  • 9Sun J, Choi H L, Xu W B. A modified quantum-behaved particle swarm optimization[C]. Int Conf on Computational Science. Zurich: Springer-Verlag, 2007: 294-301.
  • 10Xi M L, Sun J, Xu W B. An improved quantum- behaved particle swarm optimization with weighted mean best position [ J ]. Applied Mathematics and Computation, 2008, 205(2): 751-759.

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部