摘要
文章简要介绍了自动术语提取任务的定义、主要方法和评价指标。针对传统的自动术语提取方法,以互信息、t值、tf-idf、C/NC-value为例介绍了单元度和术语度的概念;针对自动术语标注方法,主要介绍了基于序列标注的建模思想。从提取效果来看,现有自动术语提取技术距离期望仍有差距,文章也尝试给出了一些值得探索的方向。
This paper overviews the definition, major approaches and the evaluation metrics of the ATE task. For the traditional approaches, we mainly elaborate the measurement of the Unithood and Termhood, using pointwise mutual information, t-value, ti-idf weighting and C/NC-value as examples. For Automatic Term Labelling, we mainly present the sequence labelling modelling. We think the performance of Automatic Term Extraction/Labelling is still not satisfactory from a point of view of real application, and try to offer a few directions of further improvements.
出处
《中国科技术语》
2022年第1期3-13,共11页
CHINA TERMINOLOGY
基金
全国科学技术名词审定委员会科研项目“基于深度学习的科技术语提取技术研究”(2017001)
国家自然科学基金项目“基于深度学习的数据-文本生成技术研究”(61876004)。
关键词
自动术语提取
自动术语标注
单元度
术语度
机器学习
automatic term extraction
automatic term labelling
unithood
termhood
machine learning