期刊文献+

基于网络搜索数据和机器学习的票房预测模型 被引量:2

Box Office Prediction Model Based on Web Search Data and Machine Learning
下载PDF
导出
摘要 电影票房预测对于管理部门一直是一项重要而复杂的工作。电影票房相关变量复杂多变,且数据获取难度较大是制约当前研究的主要因素。相比之下,网络搜索数据是互联网公司发布的用于记录网民搜索行为的结构化数据,能客观及时反映事物的发展趋势。本研究建立了基于网络搜索数据的混合预测模型。首先,匹配与测试集最相似的训练数据构建最优训练集(OTS)。其次,应用帝国竞争算法(ICA)选择最小二乘支持向量机(LSSVM)的最佳参数组合。最后,使用优化模型进行预测。为了测试模型的效果,使用中国大陆上映的电影票房数据进行模拟实验。结果表明混合模型具有更高的预测精度。本研究所构建的模型适用于中国电影业的票房预测,可为有关部门提供决策参考。 Movie box office prediction has always been an important and complex task for the relevant departments of industry management.Film-related variables are complex and difficult to choose objectively,and the difficulty of data acquisition restricts the main factors of this kind of models.In contrast,web search data is structured data released by Internet companies to record the search behavior of netizens.It has clear meaning,easy-access,and can reflect the development trend of things objectively and timely.Based on the web search data,a hybrid prediction model including data selection method and machine learning algorithm is established in this study.Firstly,the optimal training set is constructed by selecting the training data with the greatest similarity to the test set.Secondly,Imperialist Competition Algorithms is applied to select the best combination of parameters of Least Squares Support Vector Machine.Finally,the optimized model is used for prediction.In order to test the stability and applicability,an empirical study is carried out using the box office data of the films released in China's Mainland in 2017,which shows that the proposed hybrid model has higher prediction accuracy.The built model is suitable for box office prediction and can provide decision-making reference for industry management departments.
作者 李培志 董清利 LI Pei-zhi;DONG Qing-li(School of Finance, Dongbei University of Finance and Economics, Dalian 116025, China;School of Economics and Management, Dalian University of Technology, Dalian 116024, China)
出处 《运筹与管理》 CSSCI CSCD 北大核心 2021年第11期168-175,共8页 Operations Research and Management Science
基金 国家社科基金资助项目(21CTJ012,21CTJ011) 辽宁省社科规划基金资助项目(L19CTJ001,L20CTI001) 辽宁省教育厅高等学校基本科研项目(LJKZ1037) 中央高校基本科研业务(DUT19RC(3)042)。
关键词 网络搜索数据 机器学习 票房预测 web search data machine learning box office prediction
  • 相关文献

参考文献3

二级参考文献46

  • 1宋双杰,曹晖,杨坤.投资者关注与IPO异象——来自网络搜索量的经验证据[J].经济研究,2011,46(S1):145-155. 被引量:153
  • 2艺恩咨询. 2011-2012年中国电影产业研究报告(简版)[EB/OL]. [2012-6-14]. http://www.entgroup.cn/reports/f/14- 13943.shtml.
  • 3国家广播电影电视总局. 2012年全国电影票房统计[EB/OL]. http://www.chinasarft.gov.cn/articles/2013/01/11/20- 130111112236730833.html, 2013-1-11.
  • 4Eliashberg J, Elberse A, Leenders M. The motion picture industry: Critical issues in practice, current research, and new research directions[J]. Marketing Science, 2006, 25(6): 638-661.
  • 5Eliashberg J, Jonker J, Sawhney M S, et al. MOVIEMOD: An implementable decision support system for prerelease market evaluation of motion pictures[J]. Marketing Science, 2000, 19(3): 226-243.
  • 6Neelamegham R, Chintagunta P. A Bayesian model to forecast new product performance in domestic and international markets[J]. Marketing Science, 1999, 18(2): 115-136.
  • 7Elberse A, Eliashberg J. Demand and supply dynamics for sequentially released products in international markets: The case of motion pictures[J]. Marketing Science, 2003, 22(3): 329-354.
  • 8Liu Y. Word-of-Mouth for movies: Its dynamics and impact on box office receipts[J]. Journal of Marketing, 2006, 70(3): 74-89.
  • 9艺恩咨询. 2011中国网民娱乐指数研究报告[EB/OL]. [2012-01-20]. http://www.entgroup.cn/reports/f/2012677.shtml.
  • 10Seebach C, Pahlke I, Beck R. Tracking the digital footprints of customers: How firms can improve their sensing abilities to achieve business agility[C]// ECIS 2011 Proceedings, [http://aisel.aisnet.org/ecis2011/258].

共引文献39

同被引文献14

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部