期刊文献+

带时间依赖扩散系数的分数阶非经典扩散方程的适定性 被引量:2

Well-posedness for Fractional Nonclassical Diffusion Equations with Time-dependent Diffusion Coefficients
下载PDF
导出
摘要 本文讨论带有时间依赖扩散系数的分数阶非经典扩散方程的适定性问题,运用非经典的Faedo-Galerkin方法、插值不等式以及控制收敛原理,得到方程在分数阶Sobolev空间Η^(θ)(0<θ≤1)中整体弱解的存在性、唯一性及其对初值的连续依赖性,其中非线性项满足任意阶多项式增长条件. This paper discusses the well-posedness problem of fractional nonclassical diffusion equations with time-dependent dissipation coefficients.Using the nonclassical Faedo-Galerkin method,the interpolation inequality and the control convergence principle,the existence,uniqueness and continuous dependence on initial values of the global weak solution in Η^(θ)(0<θ≤1)for the equations are obtained,where the nonlinearity f satisfies the polynomial growth of arbitrary order.
作者 刘迪 刘西盟 谢永钦 Liu Di;Liu Ximeng;Xie Yongqin(School of Mathematics and and Statistics,Changsha University of Science and Technology,Changsha 410001,China)
出处 《数学理论与应用》 2021年第4期100-108,共9页 Mathematical Theory and Applications
关键词 时间依赖扩散系数 分数阶非经典扩散方程 整体弱解 任意阶多项式增长 Time-dependent diffusion coefficient Fractional nonclassical diffusion equation Global weak solution Polynomial growth of arbitrary order
  • 相关文献

参考文献3

二级参考文献14

  • 1HongGuang Sun,Wen Chen.Fractal derivative multi-scale model of fluid particle transverse accelerations in fully developed turbulence[J].Science China(Technological Sciences),2009,52(3):680-683. 被引量:5
  • 2徐明瑜,谭文长.中间过程、临界现象——分数阶算子理论、方法、进展及其在现代力学中的应用[J].中国科学(G辑),2006,36(3):225-238. 被引量:34
  • 3KARCH G,WOYCZYNSKI W A.Fractal Hamilton-Jacobi-KPZ equations[J].Trans Amer Math Soc,2008,360:2423-2442.
  • 4BILER P,KARCH G,WOYCZYNSKI W A.Asymptotics for conservation laws involving Levy diffusion generator[J].Studia Math,2001,148:171-192.
  • 5KARCH G,MIAO C,XU X.On convergence of solutions of fractal burgers equation toward rarefaction waves[J].SiamJ Math Anal,2008,39:1536-1549.
  • 6BILER P,FUNAKI T,WLYCZYNSKI W A.Fractal Burgers equations[J].J Differential Equations,1998,148:9-46.
  • 7GILDING B H.The cauchy problem for large-time behaviour[J].J Math Pures Appl,2005,84:753-785.
  • 8DRONIOU J,IMBERT C.Fractal first order partial differential equations[J].Arch Rational Mech Anal,2006,182:299-331.
  • 9PINSKY R G,Existence and nonexistence of global solutions[J].J Differential Equations,1997,133:152-177.
  • 10AMOUR L,BEN ARTZI M.Global existence and decay for viscous Hamilton-Jacobi equations[J].Nonliear Anal,1998,31:621-628.

共引文献8

同被引文献16

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部