期刊文献+

图像匹配中KNN与RANSAC相结合的改进算法 被引量:6

Improved algorithm with combination of KNN and RANSAC in image matching
下载PDF
导出
摘要 文章提出一种将KNN与RANSAC相结合的改进算法。通过获取最近邻与次近邻值并根据双向匹配原则,设计匹配不相关性的衡量因子,对KNN算法进行了改进;对RANSAC算法的代价函数和抽样规则进行了改进;最后将两种算法相结合,实现了速度快、自适应强,匹配精确的匹配算法。实验数据表明,该算法鲁棒性较强,自适应性较高,匹配速度较快。 This paper presents an improved algorithm combining KNN and RANSAC. The KNN algorithm is improved by obtaining the nearest neighbor and next nearest neighbor values and designing the measurement factor of match uncorrelation according to the two-way matching principle. The cost function and sampling rules of RANSAC algorithm are improved. Finally, the two algorithms are combined to realize a fast, adaptive and accurate matching algorithm. Experimental data show that the algorithm has strong robustness, high adaptability and fast matching speed.
作者 廖武忠 LIAO Wuzhong(College of Software,Chongqing Institute of Engineering,Chongqing 410004,China)
出处 《实验技术与管理》 CAS 北大核心 2021年第11期223-226,共4页 Experimental Technology and Management
基金 重庆市教委科学技术研究项目(KJQN201801906)。
关键词 图像匹配 K最近邻算法 RANSAC算法 SURF算法 自适应性 image matching K-nearest neighbor algorithm RANSAC algorithm SURF algorithm adaptability
  • 相关文献

参考文献6

二级参考文献46

  • 1MARKS D L, LLULL P R, et al.. Characterization of the AWARE 10 two- gigapixel wide-field-of-view visible imager[ J ]. Applied Optics ,2014,53 ( 13 ) :54-63.
  • 2LOWE D G. Distinctive image features from scale-invariant Key-points [ J ]. International J. Computer Vision, 2004,60 (2) :91-110.
  • 3PANCHAL P M,PANCHAL S R,SHAH S K. A comparison of SIFT and SURF[J]. Computer and Communication Engi- neering,2013,1 ( 2 ) : 323-327.
  • 4BAY H,TUYTELAARS T, VAN G L. SURF:speeded up robust features [ J ]. Computer Vision and Image Understanding, 2008,110 (3) :346-359.
  • 5MUJA M, LOWED G. Scalable nearest neighbor algorithms for high dimensional data[ J ]. IEEE ,2014 ,36 (11 ) :2227- 2240.
  • 6GUANG J S,XIANG Y X,YA P D. SIFT feature Point matching based on Improved RANSAC algorithm[ C]. 2013 Fifth International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC2013), Hangzhou,2013:474-477.
  • 7Moravec H P.Towards Automatic Visual Obstacle Avoidance[C]//Proceedings of the 5th International Joint Conference on Artificial Intelligence.Cambridge,USA:MIT Press,1977:584-590.
  • 8Harris C,Stephens M.A Combined Corner and Edge Detector[C]//Proceedings of the 4th Alvey Vision Conference.Manchester,UK:[s.n.],1988:147-151.
  • 9Rosten E,Porter R,Drummond T.Faster and Better:A Machine Learning Approach to Corner Detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(1):105-119.
  • 10Mokhtarian F,Suomela R.Robust Image Corner Detec-tion Through Curvature Scale Space[J].IEEE Transac-tions on Pattern Analysis and Machine Intelligence,1998,20(12):1376-1381.

共引文献113

同被引文献50

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部