期刊文献+

L-拓扑空间广义模糊半紧性 被引量:1

Generalized fuzzy semicompactness in L-topological spaces
下载PDF
导出
摘要 借助广义半开L-集、广义半闭L-集和不等式,在L-拓扑空间定义了广义模糊半紧性,这里L是完备的de Morgan代数.这个定义不依赖于L的结构,并且L不要求分配性.证明了:①广义模糊半紧性L-集和广义半L-闭集的交是广义模糊半紧性;②当L是完备的Heyting代数时,两个广义模糊半紧L-集的并也是广义模糊半紧的;③当L是完备的Heyting代数时,在广义半不定映射下,原像是广义模糊半紧的,则像也是广义模糊半紧的.此外,当L是完全分配的de Morgan代数,给出了它的许多等价刻画. By means of generalized fuzzy semiopen L-set,generalized fuzzy semiopen L-set and inequality,we introduce generalized fuzzy semicompactness in L-spaces where L is a complete de Morgan algebra.This definition does not rely on the structure of basis lattice L and no distributivity is required.It is proved that①The intersection of a generalized fuzzy semicompact L-set and a generalized semiclosed L-set is a generalized fuzzy semicompact L-set.②When L is complete Heyting algebra,the union of two generalized fuzzy semicompact L-set is semicompact L-set.③When L is complete Heyting algebra,the generalized semiirresolute image of a generalized fuzzy semicompact L-set is a generalized fuzzy semicompact L-set.Moreover,when L is a completely distributive de Morgan algebra,many characterizations of it are given.
作者 徐振国 刘梦国 XU Zhenguo;LIU Mengguo(National Science and Technology Infrastructure Center Beijing, Beijing 100038, China;Shenyang Tongze High School, Shenyang 110011, China)
出处 《辽宁师范大学学报(自然科学版)》 CAS 2021年第4期450-453,共4页 Journal of Liaoning Normal University:Natural Science Edition
关键词 L-拓扑空间 广义半开L-集 广义半闭L-集 广义模糊半紧性 L-space generalized semiopen L-set generalized semiclosed L-set generalized fuzzy semicompactness
  • 相关文献

参考文献1

二级参考文献3

  • 1BALASUBRAMANIAN G,SUBDARAM P.On some generalizations of fuzzy continuous functions[J].Fuzzy Sets and Systems,1997,86:93-100.
  • 2JIN Han Park,JIN Keun Park.On regular generalized fuzzy closed sets and generalizations of fuzzy continuous functions[J].Indian J Pure Appl Math,2003,34:1013-1024.
  • 3AZAD K K.On fuzzy semicontinuity,fuzzy almost continuity and fuzzy weakly continuity[J].J Math Anal Appl,1981,82:14-32.

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部