摘要
采用流水线方式抽取生物医学事件存在错误传播问题,且子任务之间的联系被忽略了。为了解决这些问题,采用端到端方法,对触发词识别、要素检测和事件评估三个独立的子任务同时建模,以联合的方式进行训练,再引入依存句法信息捕获同一句子中多个事件的关联性,将依存句法树转化为图,然后用基于多头注意力机制的图神经网络来建模图信息。实验结果表明,该方法在三大生物数据集上的事件抽取任务上效果较好。
The pipelined approach to biomedical event extraction has the problem of error propagation, and the associations among these subtasks is ignored. In order to solve these problems, this paper adopts an end-to-end approach to model three independent sub-tasks, namely trigger recognition, argument detection and event evaluation, simultaneously, and conducts training in a joint way. We introduce the dependency information of the sentence to capture the relevance of multiple events in the same sentence.Therefore, the proposed method converts the dependency parse tree into a graph and uses the graph neural network based on multiple heads mechanism to model the graph information. Experimental results show that this method is effective in event extraction tasks on the three major biological data sets.
作者
刘辉雄
刘茂福
唐东昕
LIU Huixiong;LIU Maofu;TANG Dongxin(College of Computer Science and Technology,Wuhan University of Science and Technology,Wuhan 430065,Hubei,China;Hubei Province Key Laboratory of Intelligent Information Processing and Real-Time Industrial System,Wuhan 430065,Hubei,China;The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine,Guiyang 550002,Guizhou,China)
出处
《武汉大学学报(理学版)》
CAS
CSCD
北大核心
2021年第6期578-588,共11页
Journal of Wuhan University:Natural Science Edition
基金
国家重点研发计划项目(2019YFC1712504)
贵州省科技计划项目(黔科合后补助[2020]3003)。
关键词
生物医学事件抽取
端到端
依存句法
多头注意力
图神经网络
biomedical event extraction
end-to-end
dependency syntax
multi-head attention
graph neural network