期刊文献+

一种肌肉动态收缩的高密度表面肌电信号分解新方法 被引量:3

A new method for high-density surface electromyography decomposition in dynamic muscle contraction
原文传递
导出
摘要 针对肌肉动态收缩情况下的高密度表面肌电(sEMG)信号,本文提出了一种基于空间位置的sEMG信号分解方法。首先,根据肌肉运动单元(MU)在各个通道上的波形相关性,提取发放时刻,然后利用肌肉MU的空间位置分类发放时刻,最后得到MU发放序列。仿真结果表明,分类后单个MU发放序列准确率大于91.67%。针对实际sEMG信号,通过“二源法”找到同一个MU发放序列的准确率达到(88.3±2.1)%以上。本文为动态sEMG信号分解提供了一种新思路。 In this paper, a new surface electromyography(sEMG) signal decomposition method based on spatial location is proposed for the high-density sEMG signals in dynamic muscle contraction. Firstly, according to the waveform correlation of each muscle motor units(MU) in each channel, the firing times are extracted, and then the firing times are classified by the spatial location of MU. The MU firing trains are finally obtained. The simulation results show that the accuracy rate of a single MU firing train after classification is more than 91.67%. For real sEMG signals, the accuracy rate to find a same MU by the “two source” method is over(88.3 ± 2.1)%. This paper provides a new idea for dynamic sEMG signal decomposition.
作者 何金保 管冰蕾 黄凯 骆再飞 HE Jinbao;GUAN Binglei;HUANG Kai;LUO Zaifei(The School of Electronic and Information Engineering,Ningbo University of Technology,Ningbo,Zhejiang 315211,P.R.China;Ningbo First Hospital,Ningbo,Zhejiang 315010,P.R.China)
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2021年第6期1081-1086,共6页 Journal of Biomedical Engineering
基金 国家自然科学基金资助项目(61403218) 宁波市自然科学基金(2019A610096)。
关键词 运动单元 表面肌电 动态信号分解 空间位置 motor unit surface electromyography dynamic signal decomposition spatial location
  • 相关文献

参考文献2

二级参考文献32

  • 1任小梅,王志中,胡晓.应用小波变换和ICA方法的肌电信号分解[J].数据采集与处理,2006,21(3):272-276. 被引量:4
  • 2侯文生,许蓉,郑小林,马丽.握力大小与前臂肌肉表面肌电活动模式的相关性研究[J].航天医学与医学工程,2007,20(4):264-268. 被引量:25
  • 3李强,杨基海,陈香,张旭.基于SEONS算法的表面肌电信号分解方法研究[J].航天医学与医学工程,2007,20(2):120-125. 被引量:7
  • 4Liu Y, Ning Y, Li S, et al. Three-dimensional innervation zone imaging from multi-channel surface EMG recordings[ J]. International Journal of Neural Systems, 2015, 25 (6): 1550024.
  • 5Christophy M, Senan NAF, Lotz JC, et al. A musculoskeletal model for the lumbar spine [ J ]. Biomechanics and modeling in mechanobiology, 2012, 11 ( 1-2 ) : 19-34.
  • 6Wilson E. Force response of locust skeletalmuscle [ D ]. Southampton: Southampton University, 2001.
  • 7Riener R, Quintern J. A physiologically based model of mus- cle activation verified by electrical stimulation[J]. Bioelectro- chem Bioenerg,1997,43(2) : 257-264.
  • 8Ghigliazza R, Holmes P. Towards a neuromechanical model for insect locomotion : hybrid dynamical systems [ J ]. Regul Chaotic Dyn, 2005,10(2) : 193-225.
  • 9Ding J, Wexler AS, Binder-Macleod SA. A mathematical model that predicts the force-frequency relationship of human skeletal muscle[J]. Muscle Nerve, 2002, 26 (4):477-485.
  • 10Nakano T,Nagata K, Yamada M, et al. Application of least square method for muscular strength estimation in hand motion recognition using surface EMG[C]. Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual Internation- al Conference of the IEEE, 2009 : 2655-2658.

共引文献1

同被引文献35

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部