期刊文献+

Second-order modeling of non-premixed turbulent methane-air combustion

非预混湍流甲烷-空气燃烧的二阶建模
下载PDF
导出
摘要 The main purpose of this research is the second-order modeling of flow and turbulent heat flux in nonpremixed methane-air combustion.A turbulent stream of non-premixed combustion in a stoichiometric condition,is numerically analyzed through the Reynolds averaged Navier-Stokes(RANS) equations.For modeling radiation and combustion,the discrete ordinates(DO) and eddy dissipation concept model have been applied.The Reynolds stress transport model(RSM) also was used for turbulence modeling.For THF in the energy equation,the GGDH model and high order algebraic model of HOGGDH with simple eddy diffusivity model have been applied.Comparing the numerical results of the SED model(with the turbulent Prandtl 0.85) and the second-order heat flux models with available experimental data follows that applying the second-order models significantly led to the modification of predicting temperature distribution and species mass fraction distribution in the combustion chamber.Calculation of turbulent Prandtl number in the combustion chamber shows that the assumption of Pr_(t) of 0.85 is far from reality and Pr_(t) in different areas varies from 0.4 to 1.2. 本研究的主要目的是对非预混甲烷-空气燃烧中的流动和湍流热通量进行二阶建模。采用雷诺平均Navier-stokes (RANS)方程对化学计量条件下非预混燃烧的湍流进行了数值分析。采用离散坐标和涡流耗散概念模型对辐射和燃烧进行建模,并采用RSM模型对湍流进行建模。应用GGDH模型和具有简单涡扩散模型的HOGGDH高阶代数模型对能量方程中的THF进行建模,将SED模型和二阶热通量模型的数值结果与现有的实验数据进行比较,发现应用二阶模型导致了预测燃烧室温度分布和物质质量分数分布的变化。燃烧室湍流普朗特数的计算表明,Pr为0.85与实际相差较大,不同区域的Pr从0.4到1.2不等。
出处 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第11期3545-3555,共11页 中南大学学报(英文版)
关键词 combustion modeling turbulent Prandtl number second-order models Reynolds stress transport model 燃烧建模 湍流普朗特数 二阶模型 雷诺应力模型
  • 相关文献

参考文献5

二级参考文献14

  • 1何永森,蒋光彪.锥形渐扩管内紊流数值预测诊断系统的研究——模型函数、网格配置和雷诺数的影响[J].湘潭大学自然科学学报,2006,28(2):1-4. 被引量:2
  • 2Vladan D. Djordjevi?.A Higher-Order Asymptotic Theory for Fully Developed Turbulent Flow in Smooth Pipes[J].Journal of Engineering Mathematics.1998(3)
  • 3V. V. Zyabrikov,L. G. Loitsyanskii.The damping factor in the theory of the Prandtl mixing length[J].Fluid Dynamics.1987(5)
  • 4COTTON M A.Resonant response in periodic turbulent flows: Computations using a k-ε eddy viscosity model[].Journal of Hydraulic Research.2007
  • 5CRUZ D O A,PINHO F T.Turbulent pipe flow predictions with alow Reynolds number k-ε model for drag reducing fluids[].Journal of Non Newtonian Fluid Mechanics.2003
  • 6REICHARDT H.Complete representation of a turbulent velocity distribution in smooth tubes[].Journal of Applied Mathematics and Mechanics.1951
  • 7DJORDJEVIC V D.A higher-order asymptotic theory for fully developed turbulent flow in smooth pipes[].Journal of Engineering Mathematics.1998
  • 8BIRD R B,STEWART W E,LIGHTFOOT E N.Transportphenomena[]..2002
  • 9ZYABRIKOV V V,LOITSYANSKII L G.The damping factor in the theory of Prandtl mixing length[].Fluid Dynamics.1987
  • 10BRADSHAW P.Turbulence[]..1976

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部