摘要
文章针对一类非线性分数阶微分方程的数值解进行探讨.利用可微函数的Taylor展式,将方程中的分数阶微分项展成幂级数形式,进而得到微分方程的近似解,数值算例验证了方法求解问题的有效性.
A class of nonlinear fractional order differential equation is studied.By using Taylor expansion,the fractional differential term is expanded into power series,and then the approximate solution of the equation is obtained.The validity of the method is verified by example.
作者
金艳玲
JIN Yanling(Shanxi Vocational University of Engineering Science and Technology,Shanxi Jinzhong 030619,China)
出处
《太原师范学院学报(自然科学版)》
2021年第4期26-28,共3页
Journal of Taiyuan Normal University:Natural Science Edition
关键词
分数阶微分方程
分数差分
数值解
fractional order differential equation
power series
numerical solution