期刊文献+

一类非线性分数阶微分方程的幂级数求解

The Solution of a Kind of Non-linear Fractional Order Differential Equation by Power Series
下载PDF
导出
摘要 文章针对一类非线性分数阶微分方程的数值解进行探讨.利用可微函数的Taylor展式,将方程中的分数阶微分项展成幂级数形式,进而得到微分方程的近似解,数值算例验证了方法求解问题的有效性. A class of nonlinear fractional order differential equation is studied.By using Taylor expansion,the fractional differential term is expanded into power series,and then the approximate solution of the equation is obtained.The validity of the method is verified by example.
作者 金艳玲 JIN Yanling(Shanxi Vocational University of Engineering Science and Technology,Shanxi Jinzhong 030619,China)
出处 《太原师范学院学报(自然科学版)》 2021年第4期26-28,共3页 Journal of Taiyuan Normal University:Natural Science Edition
关键词 分数阶微分方程 分数差分 数值解 fractional order differential equation power series numerical solution
  • 相关文献

参考文献5

二级参考文献42

  • 1尹建华,任建娅,仪明旭.Legendre小波求解非线性分数阶Fredholm积分微分方程[J].辽宁工程技术大学学报(自然科学版),2012,31(3):405-408. 被引量:21
  • 2陈忠,崔明根.一类非线性常微分方程的精确解及其近似解[J].黑龙江大学自然科学学报,2005,22(4):504-509. 被引量:1
  • 3李弼程,罗建书.小波分析及其应用[M].北京:电子工业出版社,2005.
  • 4陈景华.Caputo分数阶反应-扩散方程的隐式差分逼近[J].厦门大学学报(自然科学版),2007,46(5):616-619. 被引量:14
  • 5LIU F,ANH V,TURNER I. Numerical solutionof space fractional Fokker-Planck equation [ J ].Comput Appl Math , 2004,166 : 209-219.
  • 6ZAID O,SHAHER M. A generalized differentialtransform method for linear partial differentialequations of fractional order [ J ]. AppliedMathematics Letters <, 2008,21: 194-199.
  • 7LI Yuan-lu. Solving a nonlinear fractional differentialequation using Chebyshev wavelets [ J ]. CommunNonlinear Sci Numer Simulat,2010,15: 2284-2292.
  • 8EI-KALLA I L. Error estimate of the series solutionto a class of nonlinear fractional differential equations[J]. Commun Nonlinear Sci Numer Simula,2011,16: 1408-1413.
  • 9PODLUBNY I. Franctional Differential Equations[M]. San Diego: Academic Press, 1999.
  • 10GUF J,JIANG W. The Haar wavelets operationalmatrix of integration[J]. Int J Syst Sci,1996, 27:623-628.

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部