摘要
Smarandachely邻点可区别全染色是指相邻点的色集合互不包含的邻点可区别全染色,是对邻点可区别全染色条件的进一步加强。本文研究了平面图的Smarandachely邻点可区别全染色,即根据2-连通外平面图的结构特点,利用分析法、数学归纳法,刻画了最大度为5的2-连通外平面图的Smarandachely邻点可区别全色数。证明了:如果G是一个Δ(G)=5的2-连通外平面图,则χ_(sat)(G)≤9。
The adjacent vertex distinguishable total coloring is the total coloring with different sets of adjacent vertices,while the Smarandachely adjacent vertex distinguishing total coloring is the adjacent vertex distinguishing total coloring which does not contain each other in the color set of adjacent vertices.It is a further enhancement of the condition of adjacent vertex-distinguishing total coloring.We call the minimum number of colors used for a graph to satisfy Smarandachely’s adjacent vertex-distinguishing total coloring as its Smarandachely adjacent vertex-distinguishing total chromatic number.In this paper,the Smarandachely adjacent vertex distinguishing total chromatic number of2-connected outer plane graphs with maximum degree of 5 is studied by means of analytical method and mathematical induction.It is proved that if G is a 2-connected outer planar graph withΔ(G)=5,thenχ_(sat)(G)≤9.
作者
李春梅
王治文
LI Chunmei;WANG Zhiwen(School of Mathematics and Statistics,Ningxia University,Yinchuan 750021,Ningxia,China)
出处
《运筹学学报》
CSCD
北大核心
2021年第4期120-126,共7页
Operations Research Transactions
基金
国家自然科学基金(No.11261046)
宁夏自然科学基金(No.2018AAC03055)。