摘要
用户在使用现有的搜索引擎时,常因为无法构造清晰准确的查询词而导致检索效果不佳,传统的查询推荐方法没有充分考虑用户行为的关联性,导致了查询推荐的结果不准确.本文提出了一个新的查询推荐模型,即基于点击模型和网络嵌入的查询推荐模型.该模型首先通过点击链式模型嵌入用户的历史检视行为和点击行为,并通过注意力机制衡量查询和返回文档的相关性;然后利用属性异构网络来获取复杂异质网络结构中的潜在语义信息;最后通过多头注意力捕获多个空间的复杂信息,并利用多任务学习来做评分预测.在搜狗实验室提供的公开查询日志上的实验结果表明,我们的模型在查询建议的鉴别式任务和生成式任务中均优于基线模型.
When using the existing search engines,users often fail to construct clear and accurate query words,which leads to poor retrieval results.Traditional query recommendation methods do not fully consider the relevance of user behavior,resulting in inaccurate query recommendation results.This study builds a new query recommendation model,which is based on the click model and network embedding.Firstly,the model embeds the user’s history view behavior and click behavior through the click chain model and measures the relevance between the query and the returned documents through the attention mechanism;secondly,it uses the attribute heterogeneous network to obtain the potential semantic information in a complex heterogeneous network structure;finally,it captures the complex information in multiple spaces through multi-head attention and uses multi-task learning to make score prediction.The experimental results on the public query log provided by SogouLabs show that our model is superior to the baseline model in both discriminative and generative tasks.
作者
王奕昕
范春晓
吴岳辛
WANG Yi-Xin;FAN Chun-Xiao;WU Yue-Xin(School of Electronic Engineering,Beijing University of Posts and Telecommunications,Beijing 100876,China)
出处
《计算机系统应用》
2021年第12期255-261,共7页
Computer Systems & Applications
关键词
查询建议
用户行为
查询重构
查询嵌入
query suggestion
user behavior
query reformulation
query embedding