期刊文献+

Wireless,battery-free,and fully implantable electrical neurostimulation in freely moving rodents 被引量:3

原文传递
导出
摘要 Implantable deep brain stimulation(DBS)systems are utilized for clinical treatment of diseases such as Parkinson's disease and chronic pain.However,long-term efficacy of DBS is limited,and chronic neuroplastic changes and associated therapeutic mechanisms are not well understood.Fundamental and mechanistic investigation,typically accomplished in small animal models,is difficult because of the need for chronic stimulators that currently require either frequent handling of test subjects to charge battery-powered systems or specialized setups to manage tethers that restrict experimental paradigms and compromise insight.To overcome these challenges,we demonstrate a fully implantable,wireless,battery-free platform that allows for chronic DBS in rodents with the capability to control stimulation parameters digitally in real time.The devices are able to provide stimulation over a wide range of frequencies with biphasic pulses and constant voltage control via low-impedance,surface-engineered platinum electrodes.The devices utilize off-the-shelf components and feature the ability to customize electrodes to enable broad utility and rapid dissemination.Efficacy of the system is demonstrated with a readout of stimulation-evoked neural activity in vivo and chronic stimulation of the medial forebrain bundle in freely moving rats to evoke characteristic head motion for over 36 days.
出处 《Microsystems & Nanoengineering》 SCIE EI CSCD 2021年第4期127-138,共12页 微系统与纳米工程(英文)
基金 support from the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health T32EB000809(A.B.) the ARCS Foundation(A.B.).The University of Arizona Department of Biomedical Engineering startup funds(P.G.)and Core Facilities Pilot Program(CA-CFPP NANO-3310342)(P.G.).5.M.W.acknowledges the support by the MSIT(Ministry of Science and IC〇,Korea,under the ICT Creative Consilience program(IITP-2020-0-01821) by Nano Material Technology Development Program(2020M3H4A1A03084600) through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT of Korea The Eunice Kennedy Shriver National Institute of Child Health&Human Development(K12HD073945,F.V.).University of Pennsylvania Department of Neurosurgery startup funds(A.G.R.).
  • 相关文献

同被引文献33

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部